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PrefaceY

We introduce a framework for forecasting age-sex-country-cause-specific mortality rates
that can incorporate more information, and thus has the potential to forecast better, than
existing approaches. Mortality forecasts are used in a wide variety of academic fields and
for global and national health policy making, medical and pharmaceutical research, and
social security and retirement planning.

As it turns out, the tools we developed in pursuit of this goal also have broader
statistical implications, in addition to their use for forecasting mortality or other variables
with similar statistical properties. First, our methods make it possible to include different
explanatory variables in a time-series regression for each crosssection, while still borrowing
strength from one regression to improve the estimation of all. Second, we show that many
existing Bayesian (hierarchical and spatial) models with explanatory variables use prior
densities that incorrectly formalize prior knowledge. Many demographers and public health
researchers have fortuitously avoided this problem so prevalent in other fields by using
prior knowledge only as an ex post check on empirical results, but this approach excludes
considerable information from their models. We show how to incorporate this demographic
knowledge into a model in a statistically appropriate way that also turns out to have the
advantage of requiring many fewer adjustable parameters than classic Bayesian approaches.
Finally, we develop a set of tools useful for developing models with Bayesian priors in the
presence of partial prior ignorance. This approach also provides many of the attractive
features claimed by the empirical Bayes approach but does so fully within the standard
Bayesian theory of inference.

Software and Data

Accompanying this book is a free and open source software package that implements
all our suggestions (see http://GKing.Harvard.edu/yourcast/ for a copy). The software is
entitled “YourCast: Time Series Cross-Sectional Forecasting with Your Assumptions” to
emphasize a key intended contribution of our approach: that the assumptions made by the
statistical model you run are governed entirely by your choices and your assumptions,
and the sophistication of those assumptions and the degree to which they match empirical
reality are limited primarily by what you may know or are willing to assume rather than
by arbitrary choices hidden behind or hard-coded into a complicated mathematical model.
Although some of the tools we introduce require technical sophistication to implement, the
ideas are conceptually straightforward. As such, the software and methods should be usable
even by those who decide not to digest all of our detailed mathematical arguments.

YourCast is distributed as an R package and is part of the R Project for Statistical Com-
puting (R Development Core Team, 2007). Included in that package are demonstrations
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that include all the data and code necessary to replicate all the empirical analyses in this
book (King, 1995). The complete data set from which examples are drawn is available in
Girosi and King (2006).

Background

The methods developed in this book rely on fields of statistics and mathematics, at least
some of which are likely to be unfamiliar to many interested in mortality forecasting. Yet,
given the highly important public policy issues at stake, the advantage to scholars and
citizens of any forecasting improvement, even when achieved via unfamiliar mathematical
techniques, should, in our view, outweigh higher costs to researchers in learning the
methods. We have thus not shied away from introducing new methods but have tried to
reduce the associated costs to researchers in a variety of ways. Most importantly, we explain
our methodology in a way that should make all of our results accessible to those who are
familiar only with linear regression analysis and a course in Bayesian inference. We also
include in appendix A a detailed glossary of notation. In addition, because different aspects
of the necessary mathematical background are likely unfamiliar to different audiences, as
they were even to us when we started, we offer an extensive mathematical refresher in
appendix B that should be relatively complete as is.

Although we have attempted to keep the book as readable as possible, we have also
included, for more mathematically sophisticated readers, all necessary proofs and evidence
so that the work would be relatively self-contained.

Publications

In some of the fields with which the content of this book intersects, almost all new results
appear first in articles. Book presses are left to print texts that only summarize prior
research. In this project, we resisted the temptation to send preliminary or partial results
to scholarly journals because we felt the whole of our book would be greater than the sum
of the parts, sliced into smaller articles, and because our goal was to produce a relatively
complete and usable forecasting method in practice. Thus, although we have presented
preliminary results in talks over the years, and shared earlier versions of this manuscript,
this book is the first complete account of our approach.
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