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The Scholarly Influence of Propensity Score Matching

The most commonly used matching method

In 49,600 articles! (according to Google Scholar)

Maybe even “the most developed and popular strategy for
causal analysis in observational studies” (Pearl, 2010)

~ This paper is about: propensity score matching, as used
in practice. Not implicated by our results:
e Other uses of propensity scores: E.g., regression adjustment,
inverse weighting, stratification, pscores used in other methods
e The mathematical theorems about propensity scores
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The Problems Matching Solves

Withowst Matching:

Jribalance ~» Modet-Dependence ~ Researcher-discretion ~ Bias

A central project of statistics: Automating away human discretion
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Y; dep var, T; (1=treated, O=control), X; confounders
Treatment Effect for treated observation i:

TE; = Y; - Yi(0)

= observed — unobserved

Estimate Y;(0) with Y; from a matched (X; =~ X;) control
~> Must have the right X's! (aka “ignorability”)
Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

SATT = Mean (TE;)
iE{Ti=1}

2. FSATT: Feasible SATT (prune badly matched treateds too)
Big convenience: Follow preprocessing with whatever
statistical method you'd have used without matching
Pruning nonmatches makes control vars matter less: reduces
imbalance, model dependence, researcher discretion, & bias
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Goal of Each Matching Method (in Observational Data)

e PSM: complete randomization
e Other methods: fully blocked
e Other matching methods dominate PSM (wait, it gets worse)
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e (Mahalanobis is for methodologists; in applications, use
Euclidean!)
e Match each treated unit to the nearest control unit
e Control units: not reused; pruned if unused
e Prune matches if Distance>caliper
e (Many adjustments available to this basic method)
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m =Pr(T; =1X) = m
e Distance(X;, X;) = |mc — ]
e Match each treated unit to the nearest control unit
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Deleting data only helps if you're careful!

e “Random pruning”: pruning process is independent of X
e Discrete example

e Sex-balanced dataset: treateds M, F;, controls M., F.
e Randomly prune 1 treated & 1 control ~~ 4 possible datasets:
2 balanced {M;, M.}, {F:, Fc}
2 imbalanced {M,, F.}, {F:, M.}
e — random pruning increases imbalance
e Continuous example
e Dataset: T € {0,1} randomly assigned; X any fixed variable;
with n units
e Measure of imbalance: squared difference in means d?, where
d=X: — X
E(d?) = V(d) < 1/n (note: E(d) =0)
Random pruning ~~ n declines ~~ E(d?) increases
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When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates
What if | match on a few important covariates and then use
PSM? The low standards will be raised some, but the PSM
Paradox will kick in earlier
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X2

PSM is Blind Where Other Methods Can See

Mahalanobis
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What Does PSM Match?

MDM Matches

—— First 25 Matches - Treated
—— Second 25 Matches « Control
Third 25 Matches

Final 25 Matches
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PSM Matches

—— First 25 Matches

—— Second 25 Matches
Third 25 Matches
Final 25 Matches

Controls: X3, Xa ~ Uniform(0,5)
Treateds: Xj, X2 ~ Uniform(1,6)
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0.01 0.02 0.03 0.04 0.05

0.00

PSM Increases Model Dependence & Bias

Model Dependence Bias

Maximum Coefficient across 512 Specifications

Yi=2T; + Xii + Xoj + €
ei ~ N(0,1)
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Imbalance

The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)
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Conclusions

Why propensity scores should not be used for matching:
e Low Standards: sometimes helps, never optimizes
e The PSM Paradox: When you do “better,” you do worse
e Some mistakes with PSM: Controlling for irrelevant covariates;
Adjusting experimental data; Reestimating propensity score
after eliminating noncommon support; 1/4 sd caliper on
propensity score; Not switching to other methods.

A warning for any matching method:
e Pruning discards information; you must overcome this.
e Other methods can generate a “paradox” if you prune after
approximating full blocking (rare, but possible)
o If you're not doing positive good, you may be hurting yourself
Matching remains a highly recommended approach to improve
causal inferences

Best to choose a matching method with higher standards
— about which more this afternoon!
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