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~ This paper is about: propensity score matching, as used
in practice. Not implicated by our results:

e Other uses of propensity scores: E.g., regression adjustment,
inverse weighting, stratification, pscores used in other
methods, such as GenMatch or CBPS

e The mathematical theorems about propensity scores
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Withowst Matching:

Jribalance ~» Modet-Dependence ~ Researcher-discretion ~ Bias

A central project of statistics: Automating away human discretion
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Y; dep var, T; (1=treated, O=control), X; confounders
Treatment Effect for treated observation i:

TE; = Y; — i(0)

= observed — unobserved

Estimate Y;(0) with Y; with a matched (X; =~ X;) control
Quantities of Interest:
1. SATT: Sample Average Treatment effect on the Treated:

SATT = Mean (TE;)
iE{Ti=1}

2. FSATT: Feasible SATT (prune badly matched treateds too)
Big convenience: Follow preprocessing with whatever
statistical method you’d have used without matching
Pruning nonmatches makes control vars matter less: reduces
imbalance, model dependence, researcher discretion, & bias
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Goal of Each Matching Method (in Observational Data)

e PSM: complete randomization
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e Other matching methods dominate PSM (wait, it gets worse)
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e (Mahalanobis is for methodologists; in applications, use
Euclidean!)
e Match each treated unit to the nearest control unit
e Control units: not reused; pruned if unused
e Prune matches if Distance>caliper
e (Many adjustments available to this basic method)
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e Weight controls in each stratum to equal treateds
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m =Pr(T; =1X) = m
e Distance(X;, X;) = |mc — ]
e Match each treated unit to the nearest control unit
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Deleting data only helps if you're careful!

e “Random pruning”: pruning process is independent of X
e Discrete example

e Sex-balanced dataset: treateds M, F;, controls M., F.
e Randomly prune 1 treated & 1 control ~~ 4 possible datasets:
2 balanced {M;, M.}, {F:, Fc}
2 imbalanced {M,, F.}, {F:, M.}
e — random pruning increases imbalance
e Continuous example
e Dataset: T € {0,1} randomly assigned; X any fixed variable;
with n units
e Measure of imbalance: squared difference in means d?, where
d=X: — X
E(d?) = V(d) < 1/n (note: E(d) =0)
Random pruning ~~ n declines ~~ E(d?) increases
= random pruning increases imbalance

16/23



PSM'’s Statistical Properties

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe=Xy = mwc=m

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
X=Xy — 7. =7 but
Te=m > Xe=Xe

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
X=Xy — 7. =7 but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
X=Xy — 7. =7 but
Te =7 == Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning)

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata)

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes
o FEfficient relative to complete randomization, but
e |Inefficient relative to (the more powerful) full blocking
e Other methods dominate:
Xe =Xy = m. = but
Te=m > Xe=X;
2. The PSM Paradox: When you do “better,” you do worse
e When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias
o If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

2. The

Efficient relative to complete randomization, but
Inefficient relative to (the more powerful) full blocking
Other methods dominate:

X=Xy — 7. =7 but

Te=m > Xe=Xe

PSM Paradox: When you do “better,” you do worse

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

2. The

Efficient relative to complete randomization, but
Inefficient relative to (the more powerful) full blocking
Other methods dominate:

X=Xy — 7. =7 but

Te=m > Xe=Xe

PSM Paradox: When you do “better,” you do worse

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?
Nope.

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

2. The

Efficient relative to complete randomization, but
Inefficient relative to (the more powerful) full blocking
Other methods dominate:

X=Xy — 7. =7 but

Te=m > Xe=Xe

PSM Paradox: When you do “better,” you do worse

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

2. The

Efficient relative to complete randomization, but
Inefficient relative to (the more powerful) full blocking
Other methods dominate:

X=Xy — 7. =7 but

Te=m > Xe=Xe

PSM Paradox: When you do “better,” you do worse

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates
What if | match on a few important covariates and then use
PSM?

17/23



PSM'’s Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

2. The

Efficient relative to complete randomization, but
Inefficient relative to (the more powerful) full blocking
Other methods dominate:
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PSM Paradox: When you do “better,” you do worse

When PSM approximates complete randomization (to begin
with or, after some pruning) ~~ all & = 0.5 (or constant
within strata) ~> pruning at random ~» Imbalance ~~
Inefficency ~~ Model dependence ~~ Bias

If the data have no good matches, the paradox won't be a
problem but you're cooked anyway.

Doesn't PSM solve the curse of dimensionality problem?
Nope. The PSM Paradox gets worse with more covariates
What if | match on a few important covariates and then use
PSM? The low standards will be raised some, but the PSM
Paradox will kick in earlier
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PSM is Blind Where Other Methods Can See
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What Does PSM Match?

MDM Matches

—— First 25 Matches - Treated
—— Second 25 Matches « Control
Third 25 Matches

Final 25 Matches
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PSM Matches

—— First 25 Matches

—— Second 25 Matches
Third 25 Matches
Final 25 Matches

Controls: X3, Xa ~ Uniform(0,5)
Treateds: Xj, X2 ~ Uniform(1,6)
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PSM Increases Model Dependence & Bias

Model Dependence Bias

Maximum Coefficient across 512 Specifications

Yi=2T; + Xii + Xoj + €
ei ~ N(0,1)
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Imbalance

The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)
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e The PSM Paradox: When you do “better,” you do worse

e Some mistakes with PSM: Controlling for irrelevant covariates;
Adjusting experimental data; Reestimating propensity score
after eliminating noncommon support; 1/4 caliper on
propensity score; Not switching to other methods.

e A warning for any matching method:

e Pruning discards information; you must overcome this.

e Other methods can generate a “paradox” if you prune after
approximating full blocking (rare, but possible)

e If you're not doing positive good, you may be hurting yourself

e Matching methods still highly recommended; choose one with
higher standards
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For more information, papers, & software

GaryKing.org
www.mit.edu/~rnielsen
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