Why Propensity Scores Should Not Be Used For Matching

Gary King ${ }^{1}$
Institute for Quantitative Social Science Harvard University

Richard Nielsen ${ }^{2}$

MIT

MacMillan-CSAP Workshop on Quantitative Research Methods, Yale University, 3/10/2016

[^0]
The Scholarly Influence of Propensity Score Matching

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores:

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment,

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment, inverse weighting,

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification,

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, pscores used in other methods

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, pscores used in other methods
- The mathematical theorems about propensity scores:

The Scholarly Influence of Propensity Score Matching

- The most commonly used matching method
- In 53,200 articles! (according to Google Scholar)
- Maybe even "the most developed and popular strategy for causal analysis in observational studies" (Pearl, 2010)

This paper is about:

- propensity score matching
- as used in practice

Not implicated by our results:

- Other uses of propensity scores: E.g., regression adjustment, inverse weighting, stratification, pscores used in other methods
- The mathematical theorems about propensity scores: Correct, but inadequate

Matching to Reduce Model Dependence

Matching to Reduce Model Dependence

 (Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching to Reduce Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

The Problems Matching Solves

The Problems Matching Solves

Without Matching:

The Problems Matching Solves

Without Matching:
Imbalance

The Problems Matching Solves

Without Matching:
Imbalance \rightsquigarrow Model Dependence

The Problems Matching Solves

Without Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion

The Problems Matching Solves

Without Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Problems Matching Solves

Without Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator

The Problems Matching Solves

Without Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments

The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse [eff]

The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)

The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994) [exprt]

The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994) [exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)

The Problems Matching Solves

Without Matching:

Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

- Qualitative choice from unbiased estimates = biased estimator
- e.g., Choosing from results of 50 randomized experiments
- Choosing based on "plausibility" is probably worse [eff]
- conscientious effort doesn't avoid biases (Banaji 2013)
- People do not have easy access to their own mental processes or feedback to avoid the problem (Wilson and Brekke 1994) [exprt]
- Experts overestimate their ability to control personal biases more than nonexperts, and more prominent experts are the most overconfident (Tetlock 2005)
- "Teaching psychology is mostly a waste of time" (Kahneman 2011)

The Problems Matching Solves

Withoú Matching:
Imbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Problems Matching Solves

Withoú Matching:
Drbalance \rightsquigarrow Model Dependence \rightsquigarrow Researcher discretion \rightsquigarrow Bias

The Problems Matching Solves

Withoú Matching:
Dhbalance $\rightsquigarrow \overline{\text { Model Dependence }} \rightsquigarrow$ Researcher discretion \rightsquigarrow Bias

The Problems Matching Solves

Withoú Matching:
Drbalance $\rightsquigarrow \overline{\text { Modet Dependence }} \rightsquigarrow$ Researchediscretion \rightsquigarrow Bias

The Problems Matching Solves

Withoú Matching:
D反balance $\rightsquigarrow \overline{\text { Modet Dependence }} \rightsquigarrow$ Researchediscretion \rightsquigarrow Bias

The Problems Matching Solves

Withoú Matching:
Drbalance $\rightsquigarrow \overline{\text { Modet Dependence }} \rightsquigarrow$ Researchediscretion \rightsquigarrow Bias

A central project of statistics: Automating away human discretion

What's Matching?

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\mathrm{TE}_{i}=Y_{i}(1)-Y_{i}(0)
$$

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}(1)-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control
- Quantities of Interest:

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{Mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{Mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{Mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching

What's Matching?

- Y_{i} dep var, $T_{i}(1=$ treated, $0=$ control $), X_{i}$ confounders
- Treatment Effect for treated observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}-Y_{i}(0) \\
& =\text { observed }- \text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with Y_{j} with a matched $\left(X_{i} \approx X_{j}\right)$ control
- Quantities of Interest:

1. SATT: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{Mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

2. FSATT: Feasible SATT (prune badly matched treateds too)

- Big convenience: Follow preprocessing with whatever statistical method you'd have used without matching
- Pruning nonmatches makes control vars matter less: reduces imbalance, model dependence, researcher discretion, \& bias

Matching: Finding Hidden Randomized Experiments

Matching: Finding Hidden Randomized Experiments

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Complete
Randomization

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Complete Fully
Randomization Blocked

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed		
Unobserved		

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance Complete Fully
Covariates: Randomization Blocked
Observed On average
Unobserved

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	
Unobserved	On average	

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs,

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness.

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for: imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Goal of Each Matching Method (in Observational Data)

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM

Matching: Finding Hidden Randomized Experiments

Types of Experiments

Balance	Complete	Fully
Covariates:	Randomization	Blocked
Observed	On average	Exact
Unobserved	On average	On average

\rightsquigarrow Fully blocked dominates complete randomization for:
imbalance, model dependence, power, efficiency, bias, research costs, robustness. E.g., Imai, King, Nall 2009: SEs 600\% smaller!

Goal of Each Matching Method (in Observational Data)

- PSM: complete randomization
- Other methods: fully blocked
- Other matching methods dominate PSM (wait, it gets worse)

Method 1: Mahalanobis Distance Matching

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

 (Approximates Fully Blocked Experiment)1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

 (Approximates Fully Blocked Experiment)1. Preprocess (Matching)

- Distance $\left(X_{c}, X_{t}\right)=\sqrt{\left(X_{c}-X_{t}\right)^{\prime} S^{-1}\left(X_{c}-X_{t}\right)}$
- (Mahalanobis is for methodologists; in applications, use Euclidean!)
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- (Many adjustments available to this basic method)

2. Estimation Difference in means or a model

Mahalanobis Distance Matching

Education (years)

Best Case: Mahalanobis Distance Matching

Best Case: Mahalanobis Distance Matching

Best Case: Mahalanobis Distance Matching

Education (years)

Method 2: Coarsened Exact Matching

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching

(Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching
 (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

Method 2: Coarsened Exact Matching (Approximates Fully Blocked Experiment)

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

- Weight controls in each stratum to equal treateds

Coarsened Exact Matching

Coarsened Exact Matching

Education

Best Case: Coarsened Exact Matching

Best Case: Coarsened Exact Matching

Best Case: Coarsened Exact Matching

Best Case: Coarsened Exact Matching

Method 3: Propensity Score Matching

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}
$$

2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- $\operatorname{Distance}\left(X_{c}, X_{t}\right)=\left|\pi_{c}-\pi_{t}\right|$

2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{c}, X_{t}\right)=\left|\pi_{c}-\pi_{t}\right|$
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{c}, X_{t}\right)=\left|\pi_{c}-\pi_{t}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

(Approximates Completely Randomized Experiment)

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}
$$

- Distance $\left(X_{c}, X_{t}\right)=\left|\pi_{c}-\pi_{t}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model

Method 3: Propensity Score Matching

 (Approximates Completely Randomized Experiment)

 (Approximates Completely Randomized Experiment)}

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}
$$

- Distance $\left(X_{c}, X_{t}\right)=\left|\pi_{c}-\pi_{t}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- (Many adjustments available to this basic method)

2. Estimation Difference in means or a model

Propensity Score Matching

Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years) Score

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Education (years)

Best Case: Propensity Score Matching

Best Case: Propensity Score Matching

Best Case: Propensity Score Matching

Best Case: Propensity Score Matching is Suboptimal

Education (years)

Random Pruning Increases Imbalance

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets:

2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$
2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$ 2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$ 2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$ 2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$
2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^{2}, where $d=\bar{X}_{t}-\bar{X}_{c}$

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$
2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^{2}, where $d=\bar{X}_{t}-\bar{X}_{c}$
- $E\left(d^{2}\right)=V(d) \propto 1 / n($ note: $E(d)=0)$

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$
2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^{2}, where $d=\bar{X}_{t}-\bar{X}_{c}$
- $E\left(d^{2}\right)=V(d) \propto 1 / n($ note: $E(d)=0)$
- Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E\left(d^{2}\right)$ increases

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$
2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^{2}, where $d=\bar{X}_{t}-\bar{X}_{c}$
- $E\left(d^{2}\right)=V(d) \propto 1 / n($ note: $E(d)=0)$
- Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E\left(d^{2}\right)$ increases
- \Longrightarrow random pruning increases imbalance

Random Pruning Increases Imbalance

Deleting data only helps if you're careful!

- "Random pruning": pruning process is independent of X
- Discrete example
- Sex-balanced dataset: treateds M_{t}, F_{t}, controls M_{c}, F_{c}
- Randomly prune 1 treated \& 1 control $\rightsquigarrow 4$ possible datasets: 2 balanced $\left\{M_{t}, M_{c}\right\},\left\{F_{t}, F_{c}\right\}$ 2 imbalanced $\left\{M_{t}, F_{c}\right\},\left\{F_{t}, M_{c}\right\}$
- \Longrightarrow random pruning increases imbalance
- Continuous example
- Dataset: $T \in\{0,1\}$ randomly assigned; X any fixed variable; with n units
- Measure of imbalance: squared difference in means d^{2}, where $d=\bar{X}_{t}-\bar{X}_{c}$
- $E\left(d^{2}\right)=V(d) \propto 1 / n($ note: $E(d)=0)$
- Random pruning $\rightsquigarrow n$ declines $\rightsquigarrow E\left(d^{2}\right)$ increases
- \Longrightarrow random pruning increases imbalance
- Result is completely general (see math in the paper)

PSM's Statistical Properties

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:

$$
X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}
$$

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:

$$
\begin{aligned}
& X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t} \text { but } \\
& \pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}
\end{aligned}
$$

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning)

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata)

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem?

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope.

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
- What if I match on a few important covariates and then use PSM?

PSM's Statistical Properties

1. Low Standards: Sometimes helps, never optimizes

- Efficient relative to complete randomization, but
- Inefficient relative to (the more powerful) full blocking
- Other methods dominate:
$X_{c}=X_{t} \Longrightarrow \pi_{c}=\pi_{t}$ but
$\pi_{c}=\pi_{t} \nRightarrow X_{c}=X_{t}$

2. The PSM Paradox: When you do "better," you do worse

- When PSM approximates complete randomization (to begin with or, after some pruning) \rightsquigarrow all $\hat{\pi} \approx 0.5$ (or constant within strata) \rightsquigarrow pruning at random \rightsquigarrow Imbalance \rightsquigarrow Inefficency \rightsquigarrow Model dependence \rightsquigarrow Bias
- If the data have no good matches, the paradox won't be a problem but you're cooked anyway.
- Doesn't PSM solve the curse of dimensionality problem? Nope. The PSM Paradox gets worse with more covariates
- What if I match on a few important covariates and then use PSM? The low standards will be raised some, but the PSM Paradox will kick in earlier

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

PSM is Blind Where Other Methods Can See

Mahalanobis

Number of Dropped Obs.

Propensity Score

Number of Dropped Obs.

What Does PSM Match?

MDM Matches

PSM Matches

Controls: $X_{1}, X_{2} \sim \operatorname{Uniform}(0,5)$
Treateds: $X_{1}, X_{2} \sim \operatorname{Uniform}(1,6)$

PSM Increases Model Dependence \& Bias

Model Dependence
Bias

$$
\begin{aligned}
Y_{i}=2 T_{i} & +X_{1 i}+X_{2 i}+\epsilon_{i} \\
\epsilon_{i} & \sim N(0,1)
\end{aligned}
$$

The Propensity Score Paradox in Real Data

The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

The Propensity Score Paradox in Real Data

Finkel et al. (JOP, 2012)

Nielsen et al. (AJPS, 2011)

Similar pattern for >20 other real data sets we checked

Conclusions

Conclusions

- Why propensity scores should not be used for matching

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM:

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates;

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data;

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support;

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score;

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- A warning for any matching method:

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- A warning for any matching method:
- Pruning discards information; you must overcome this.

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- A warning for any matching method:
- Pruning discards information; you must overcome this.
- Other methods can generate a "paradox" if you prune after approximating full blocking (rare, but possible)

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- A warning for any matching method:
- Pruning discards information; you must overcome this.
- Other methods can generate a "paradox" if you prune after approximating full blocking (rare, but possible)
- If you're not doing positive good, you may be hurting yourself

Conclusions

- Why propensity scores should not be used for matching
- Low Standards: sometimes helps, never optimizes
- The PSM Paradox: When you do "better," you do worse
- Some mistakes with PSM: Controlling for irrelevant covariates; Adjusting experimental data; Reestimating propensity score after eliminating noncommon support; $1 / 4$ caliper on propensity score; Not switching to other methods.
- A warning for any matching method:
- Pruning discards information; you must overcome this.
- Other methods can generate a "paradox" if you prune after approximating full blocking (rare, but possible)
- If you're not doing positive good, you may be hurting yourself
- Matching methods still highly recommended; choose one with higher standards

For more information, papers, \& software

GaryKing.org www.mit.edu/~rnielsen

[^0]: ${ }^{1}$ GaryKing.org
 ${ }^{2}$ www.mit.edu/~rnielsen

