## Comparative Effectiveness of Matching Methods for Causal Inference

Gary King<br>Institute for Quantitative Social Science<br>Harvard University

joint work with
Richard Nielsen (Harvard), Carter Coberley, James Pope, Aaron Wells (Healthways)

Talk at Quantitative Issues in Cancer Research Working Seminar, Biostatistics, HSPH, 10/18/10

## Overview

- Problem: Model dependence (review)


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us compare


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us compare
- Problem: The most commonly used method can increase imbalance!


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us compare
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem


## Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us compare
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- $\rightsquigarrow$ Lots of insights revealed in the process


## Model Dependence Demonstration

## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model


## Model Dependence Demonstration

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model
- The question: How model dependent are the results?


## Two Logit Models, Apparently Similar Results

|  | Original "Interactive" Model |  | Modified Model |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Variables | Coeff | SE | P-val | Coeff | SE | P-val |
| Wartype | -1.742 | .609 | .004 | -1.666 | .606 | .006 |
| Logdead | -.445 | .126 | .000 | -.437 | .125 | .000 |
| Wardur | .006 | .006 | .258 | .006 | .006 | .342 |
| Factnum | -1.259 | .703 | .073 | -1.045 | .899 | .245 |
| Factnum2 | .062 | .065 | .346 | .032 | .104 | .756 |
| Trnsfcap | .004 | .002 | .010 | .004 | .002 | .017 |
| Develop | .001 | .000 | .065 | .001 | .000 | .068 |
| Exp | -6.016 | 3.071 | .050 | -6.215 | 3.065 | .043 |
| Decade | -.299 | .169 | .077 | -0.284 | .169 | .093 |
| Treaty | 2.124 | .821 | .010 | 2.126 | .802 | .008 |
| UNOP4 | 3.135 | 1.091 | .004 | .262 | 1.392 | .851 |
| Wardur*UNOP4 | - | - | - | .037 | .011 | .001 |
| Constant | 8.609 | 2.157 | 0.000 | 7.978 | 2.350 | .000 |
| N |  |  |  |  |  |  |
| Log-likelihood | 122 |  |  | 122 |  |  |
| Pseudo $R^{2}$ | -45.649 |  |  | -44.902 |  |  |

## Doyle and Sambanis: Model Dependence

In Sample Fit


Counterfactual Prediction


## Model Dependence: A Simpler Example

## Model Dependence: A Simpler Example

(King and Zeng, 2006: fig. 4 Political Analysis)

## Model Dependence: A Simpler Example

(King and Zeng, 2006: fig. 4 Political Analysis)


## Model Dependence: A Simpler Example

(King and Zeng, 2006: fig. 4 Political Analysis)


What to do?

## Model Dependence: A Simpler Example

## (King and Zeng, 2006: fig. 4 Political Analysis)



What to do?

- Preprocess I: Eliminate extrapolation region


## Model Dependence: A Simpler Example

## (King and Zeng, 2006: fig. 4 Political Analysis)



What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region


## Model Dependence: A Simpler Example

## (King and Zeng, 2006: fig. 4 Political Analysis)



What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance


## Matching within the Interpolation Region

# Matching within the Interpolation Region 

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

## Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



## Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Matching reduces model dependence, bias, and variance

## What Matching Does

## What Matching Does

- Notation:


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\mathrm{TE}_{i}=Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right)
$$

## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with $Y_{j}$ from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}(0)=Y_{j}(0)$ or a model $\hat{Y}_{i}(0)=\hat{g}_{0}\left(X_{j}\right)$


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with $Y_{j}$ from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}(0)=Y_{j}(0)$ or a model $\hat{Y}_{i}(0)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so $X$ is unimportant)


## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with $Y_{j}$ from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}(0)=Y_{j}(0)$ or a model $\hat{Y}_{i}(0)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so $X$ is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\frac{1}{n_{T}} \sum_{i \in\left\{T_{i}=1\right\}} \mathrm{TE}_{i}
$$

## What Matching Does

- Notation:
$Y_{i}$ Dependent variable
$T_{i}$ Treatment variable (0/1)
$X_{i}$ Pre-treatment covariates
- Treatment Effect for treated ( $T_{i}=1$ ) observation $i$ :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}(0)$ with $Y_{j}$ from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}(0)=Y_{j}(0)$ or a model $\hat{Y}_{i}(0)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so $X$ is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$
\mathrm{SATT}=\frac{1}{n_{T}} \sum_{i \in\left\{T_{i}=1\right\}} \mathrm{TE}_{i}
$$

- or Feasible Average Treatment effect on the Treated: FSATT


## Method 1: Mahalanobis Distance Matching

## Method 1: Mahalanobis Distance Matching

(1) Preprocess (Matching)
(2) Estimation Difference in means or a model

## Method 1: Mahalanobis Distance Matching

(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
(2) Estimation Difference in means or a model


## Method 1: Mahalanobis Distance Matching

(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
(2) Estimation Difference in means or a model


## Method 1: Mahalanobis Distance Matching

(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
(2) Estimation Difference in means or a model


## Method 1: Mahalanobis Distance Matching

(1) Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
(2) Estimation Difference in means or a model


## Method 2: Propensity Score Matching

## Method 2: Propensity Score Matching

(1) Preprocess (Matching)
(2) Estimation Difference in means or a model

## Method 2: Propensity Score Matching

(1) Preprocess (Matching)

- Reduce $k$ elements of $X$ to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i j} \beta}}$
(2) Estimation Difference in means or a model


## Method 2: Propensity Score Matching

(1) Preprocess (Matching)

- Reduce $k$ elements of $X$ to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
(2) Estimation Difference in means or a model


## Method 2: Propensity Score Matching

(1) Preprocess (Matching)

- Reduce $k$ elements of $X$ to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
(2) Estimation Difference in means or a model


## Method 2: Propensity Score Matching

(1) Preprocess (Matching)

- Reduce $k$ elements of $X$ to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta^{\beta}}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
(2) Estimation Difference in means or a model


## Method 2: Propensity Score Matching

(1) Preprocess (Matching)

- Reduce $k$ elements of $X$ to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance >caliper
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)
(2) Estimation Difference in means or a model

## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Estimation Difference in means or a model


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Estimation Difference in means or a model
- Need to weight controls in each stratum to equal treateds


## Method 3: Coarsened Exact Matching

(1) Preprocess (Matching)

- Temporarily coarsen $X$ as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
(2) Estimation Difference in means or a model
- Need to weight controls in each stratum to equal treateds
- Can apply other matching methods within CEM strata (inherit CEM's properties)


## The Bias-Variance Trade Off in Matching

## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead


## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead
- Variance $=f$ (matched sample size, estimator) $\rightsquigarrow$ we measure matched sample size instead


## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead
- Variance $=f$ (matched sample size, estimator) $\rightsquigarrow$ we measure matched sample size instead
- Bias-Variance trade off $\rightsquigarrow$ Imbalance- $n$ Trade Off


## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead
- Variance $=f$ (matched sample size, estimator) $\rightsquigarrow$ we measure matched sample size instead
- Bias-Variance trade off $\rightsquigarrow$ Imbalance- $n$ Trade Off
- Measuring Imbalance


## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead
- Variance $=f$ (matched sample size, estimator) $\rightsquigarrow$ we measure matched sample size instead
- Bias-Variance trade off $\rightsquigarrow$ Imbalance- $n$ Trade Off
- Measuring Imbalance
- Classic measure: Difference of means (for each variable)


## The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance, importance, estimator) $\rightsquigarrow$ we measure imbalance instead
- Variance $=f$ (matched sample size, estimator) $\rightsquigarrow$ we measure matched sample size instead
- Bias-Variance trade off $\rightsquigarrow$ Imbalance- $n$ Trade Off
- Measuring Imbalance
- Classic measure: Difference of means (for each variable)
- Better measure (difference of multivariate histograms):

$$
\mathcal{L}_{1}(f, g ; H)=\frac{1}{2} \sum_{\ell_{1} \cdots \ell_{k} \in H(\mathbf{X})}\left|f_{\ell_{1} \cdots \ell_{k}}-g_{\ell_{1} \cdots \ell_{k}}\right|
$$

## Comparing Matching Methods

## Comparing Matching Methods

- MDM \& PSM: Choose matched $n$, match, check imbalance


## Comparing Matching Methods

- MDM \& PSM: Choose matched $n$, match, check imbalance
- CEM: Choose imbalance, match, check matched $n$


## Comparing Matching Methods

- MDM \& PSM: Choose matched $n$, match, check imbalance
- CEM: Choose imbalance, match, check matched $n$
- Best practice: iterate


## Comparing Matching Methods

- MDM \& PSM: Choose matched $n$, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Choose matched solution \& matching method becomes irrelevant


## Comparing Matching Methods

- MDM \& PSM: Choose matched $n$, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Choose matched solution \& matching method becomes irrelevant
- Our idea: Compute lots of matching solutions, identify the frontier of lowest imbalance for each given $n$, and choose a matching solution


## A Space Graph: Real Data

Healthways Data


## A Space Graph: Real Data

## Called/Not Called Data



## A Space Graph: Real Data

FDA Data


## A Space Graph: Real Data

## Lalonde Data Subset



## A Space Graph: Simulated Data - Mahalanobis



MDM: 2 Covariates


MDM: 3 Covariates


## A Space Graph: Simulated Data - CEM

CEM: 1 Covariate


CEM: 2 Covariates


CEM: 3 Covariates


## A Space Graph: Simulated Data - Propensity Score

PSM: 1 Covariate


PSM: 2 Covariates


PSM: 3 Covariates


## Data where PSM Works Reasonably Well - PSM \& MDM



## Data where PSM Works Reasonably Well - CEM

Bad CEM: L1 = 0.661


Better CEM: L1 $=0.188$


Even Better CEM: L1 $=0.095$


## CEM Weights and Nonparametric Propensity Score

CEM Weight: $\quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad($ Unnormalized $)$

## CEM Weights and Nonparametric Propensity Score

$$
\begin{aligned}
& \text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad \text { (Unnormalized) } \\
& \text { CEM Pscore: } \quad \hat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}
\end{aligned}
$$

## CEM Weights and Nonparametric Propensity Score

CEM Weight: $\quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad($ Unnormalized $)$

CEM Pscore: $\quad \widehat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}$
$\rightsquigarrow$ CEM:

## CEM Weights and Nonparametric Propensity Score

$$
\begin{aligned}
& \text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad \text { (Unnormalized) } \\
& \text { CEM Pscore: } \quad \widehat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}
\end{aligned}
$$

$\rightsquigarrow$ CEM:

- Gives a better pscore than PSM


## CEM Weights and Nonparametric Propensity Score

$$
\begin{aligned}
& \text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad \text { (Unnormalized) } \\
& \text { CEM Pscore: } \quad \widehat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}
\end{aligned}
$$

$\rightsquigarrow$ CEM:

- Gives a better pscore than PSM
- Doesn't match based on crippled information


## PSM Approximates Random Matching in Balanced Data



- PSM Matches
---- CEM and MDM Matches


## Destroying CEM with PSM's Two Step Approach


---- CEM Matches

- CEM-generated PSM Matches


## Conclusions

## Conclusions

- Propensity score matching:


## Conclusions

- Propensity score matching: - The problem:


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake
- Reestimating the propensity score after eliminating noncommon support may be a mistake


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake
- Reestimating the propensity score after eliminating noncommon support may be a mistake
- In four data sets and many simulations:

CEM > Mahalanobis > Propensity Score

## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake
- Reestimating the propensity score after eliminating noncommon support may be a mistake
- In four data sets and many simulations:

CEM > Mahalanobis > Propensity Score

- (Your performance may vary)


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake
- Reestimating the propensity score after eliminating noncommon support may be a mistake
- In four data sets and many simulations:

CEM > Mahalanobis > Propensity Score

- (Your performance may vary)
- CEM and Mahalanobis do not have PSM's problems


## Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM is a mistake
- Adjusting experimental data with PSM is a mistake
- Reestimating the propensity score after eliminating noncommon support may be a mistake
- In four data sets and many simulations:

CEM > Mahalanobis > Propensity Score

- (Your performance may vary)
- CEM and Mahalanobis do not have PSM's problems
- You can easily check with the Space Graph

For papers, software (for R and Stata), tutorials, etc.
http://GKing.Harvard.edu/cem

