Optimizing Balance and Sample Size in Matching Methods for Causal Inference¹

${\sf Gary}\;{\sf King}^2$

Institute for Quantitative Social Science Harvard University

(Talk at the Institute for Health Metrics and Evaluation, 6/10/2013)

¹Joint work with Christopher Lucas and Richard Nielsen ²GaryKing.org.

• Problem: Model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: Propensity score matching increases imbalance!

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee *n*
 - (Plus: Matching methods optimize a different "imbalance" than post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: Propensity score matching increases imbalance!
 - Solution: Not an issue with Other methods or our approach

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

• Data: 124 Post-World War II civil wars

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status, . . .
- Counterfactual question: Switch UN intervention for each war

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status, . . .
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logi	t Models	s, Appa	rently	Similar	Results	
Ŭ	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4	—	—	—	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	
Log-likelihood		-45.649			-44.902	
Pseudo R ²		.423			.433	

Doyle and Sambanis: Model Dependence

Counterfactual Prediction 00.1 Probabilities from original model 0.75 Ó Ο. 8 ŝ o 00 0 0.50 æ o 6 00 o 0 0.25 0 60 Θ 0.00 0.00 0.25 0.50 0.75 1,00 Probabilities from modified model

(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

• Preprocess I: Eliminate extrapolation region

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region

(King and Zeng, 2006: fig.4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Outcome

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance

• Notation:

Y_i Dependent variable

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$\mathsf{TE}_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Notation:

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i=1\}} \left(\mathsf{TE}_i\right)$$

• Notation:

- Y_i Dependent variable
- T_i Treatment variable (0/1, or more general)
- X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

 $\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i=1\}} (\mathsf{TE}_i)$

• or Feasible Average Treatment effect on the Treated: FSATT

1. Preprocess (Matching)

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

1. Preprocess (Matching)

• Distance
$$(X_i, X_j) = \sqrt{(X_i - X_j)'S^{-1}(X_i - X_j)}$$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

 $12 \, / \, 56$

Method 2: Propensity Score Matching

Method 2: Propensity Score Matching 1. Preprocess (Matching)

2. Estimation Difference in means or a model

3. Checking Measure imbalance, tweak, repeat, ...

Method 2: Propensity Score Matching

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi = \Pr(T = 1|X) = -\frac{1}{2}$

$$\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...
- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

• Distance
$$(X_i, X_j) = |\pi_i - \pi_j|$$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i = \Pr(T_i - 1|X) - \frac{1}{1-1}$
 - $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_i, X_j) = |\pi_i \pi_j|$
 - Match each treated unit to the nearest control unit
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_i, X_i) = |\pi_i \pi_i|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_{i} = \Pr(T_{i} - 1|X) - \frac{1}{1-1}$
 - $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_i, X_j) = |\pi_i \pi_j|$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>*caliper*
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$
 - Distance $(X_i, X_i) = |\pi_i \pi_i|$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>*caliper*
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

Education (years)

Education (years)

1. Preprocess (Matching)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
- 3. Checking Determine matched sample size, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...
 - Easier, but still iterative

28 / 56

• Bias-Variance trade off ~> Imbalance-*n* Trade Off

- Bias-Variance trade off ~> Imbalance-*n* Trade Off
- Choose an imbalance metric

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

• Difference of multivariate histograms (L2)

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f, g; \mathcal{H}) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in \mathcal{H}(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Difference of multivariate histograms (L2)
- The metric defines the "*n*-imbalance frontier" (lowest imbalance for each *n*)

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f, g; \mathcal{H}) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in \mathcal{H}(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Difference of multivariate histograms (L2)
- The metric defines the "*n*-imbalance frontier" (lowest imbalance for each *n*)
- Choose a matching solution (trading off bias and variance)

- Bias-Variance trade off → Imbalance-*n* Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f, g; \mathcal{H}) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in \mathcal{H}(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Difference of multivariate histograms (L2)
- The metric defines the "*n*-imbalance frontier" (lowest imbalance for each *n*)
- Choose a matching solution (trading off bias and variance)
- Result: Optimal. No need to iterate. Choice of solution left to researcher.

Example Frontier, and Results

Foreign Aid Shocks & Conflict King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Healthways Data

King, Nielsen, Coberley, Pope, and Wells (2012)

Called/Not Called Data King, Nielsen, Coberley, Pope, and Wells (2012)

FDA Drug Approval Times King, Nielsen, Coberley, Pope, and Wells (2012)

Job Training (Lelonde Data) King, Nielsen, Coberley, Pope, and Wells (2012)

PSM Approximates Random Matching in Balanced Data

Destroying CEM with PSM's Two Step Approach

- The Matching Frontier
 - Easy to use; no need to iterate

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - · Can increase imbalance when removing the worst matches

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake

- Easy to use; no need to iterate
- No need to choose among matching methods
- Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- Software on its way · · ·

For more information

GaryKing.org