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Problem: Matching methods optimize only 1 of 2 parameters

e Some fix n and don't guarantee imbalance

o Others fix imbalance and don’t guarantee n

e (Plus: Matching methods optimize a different “imbalance”
than post-hoc checks)

Solution: A New Approach — Easier & More Powerful
o We estimate the “n-imbalance frontier”
e |Imbalance metric choice defines the frontier
Side point:
e Problem: Propensity score matching increases imbalance!
e Solution: Not an issue with Other methods or our approach
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Model Dependence Example

Replication of Doyle and Sambanis, APSR 2000
(From: King and Zeng, 2007)

Data: 124 Post-World War Il civil wars
Dependent var: peacebuilding success
Treatment: multilateral UN peacekeeping intervention (0/1)

Control vars: war type, severity, duration; development
status,. ..

Counterfactual question: Switch UN intervention for each war
Data analysis: Logit model

The question: How model dependent are the results?



Two Logit Models, Apparently Similar Results
Modified Model

Original “Interactive” Model

Variables Coeff SE P-val Coeff SE P-val
Wartype —1.742 .609 .004 —1.666 .606 .006
Logdead —.445 .126 .000 —.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum —1.259 .703 .073 —1.045 .899 .245
Factnum? .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp —6.016 3.071 .050 —6.215 3.065 .043
Decade —.299 .169 .077 —0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood -45.649 -44.902

Pseudo R? 423 433
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o i > E n s 5
What to do? ‘
e Preprocess I: Eliminate extrapolation region
e Preprocess II: Match (prune bad matches) within interpolation
region

e Model remaining imbalance
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance
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Estimate Y;(T; = 0) with Y;j from matched (X; ~ X;)
controls Y;(T; = 0) = Y;(T; = 0) (or a model)
Prune unmatched units to improve balance (so X is

unimportant)
Qol: Sample Average Treatment effect on the Treated:

SATT = mean,-e{Tizl} (TE,)

or Feasible Average Treatment effect on the Treated: FSATT
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e Prune any stratum with O treated or 0 control units
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2. Estimation Difference in means or a model
e Need to weight controls in each stratum to equal treateds
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CEM'’s properties)
3. Checking Determine matched sample size, tweak, repeat, ...
e Easier, but still iterative
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e Difference of multivariate histograms (L1):
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€1~~'£k€H(X)
e Difference of multivariate histograms (L2)

e The metric defines the “n-imbalance frontier” (lowest
imbalance for each n)

¢ Choose a matching solution (trading off bias and variance)

e Result: Optimal. No need to iterate. Choice of solution left to
researcher.
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Mahalanobis Discrepancy
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Foreign Aid Shocks & Conflict

King, Nielsen, Coberley, Pope, and Wells (2012)
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Healthways Data
King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric
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Called/Not Called Data

King, Nielsen, Coberley, Pope, and Wells (2012)
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FDA Drug Approval Times

King, Nielsen, Coberley, Pope, and Wells (2012)
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Mahalanobis Discrepancy

Job Training (Lelonde Data)

King, Nielsen, Coberley, Pope, and Wells (2012)
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PSM Approximates Random Matching in Balanced Data
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Destroying CEM with PSM's Two Step Approach
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