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Overview

• Problem: Model dependence (review)

• Solution: Matching to reduce model dependence (review)

• Problem: Matching methods optimize only 1 of 2 parameters

• Some fix n and don’t guarantee imbalance
• Others fix imbalance and don’t guarantee n
• (Plus: Matching methods optimize a different “imbalance”

than post-hoc checks)

• Solution: A New Approach — Easier & More Powerful

• We estimate the “n-imbalance frontier”
• Imbalance metric choice defines the frontier

• Side point:

• Problem: Propensity score matching increases imbalance!
• Solution: Not an issue with Other methods or our approach
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Model Dependence Example

• Data: 124 Post-World War II civil wars

• Dependent var: peacebuilding success

• Treatment: multilateral UN peacekeeping intervention (0/1)

• Control vars: war type, severity, duration; development
status,. . .

• Counterfactual question: Switch UN intervention for each war

• Data analysis: Logit model

• The question: How model dependent are the results?
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Two Logit Models, Apparently Similar Results
Original “Interactive” Model Modified Model

Variables Coeff SE P-val Coeff SE P-val
Wartype −1.742 .609 .004 −1.666 .606 .006
Logdead −.445 .126 .000 −.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum −1.259 .703 .073 −1.045 .899 .245
Factnum2 .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp −6.016 3.071 .050 −6.215 3.065 .043
Decade −.299 .169 .077 −0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 .262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood -45.649 -44.902
Pseudo R2 .423 .433
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Doyle and Sambanis: Model Dependence
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Model Dependence: A Simpler Example

What to do?

• Preprocess I: Eliminate extrapolation region

• Preprocess II: Match (prune bad matches) within interpolation
region

• Model remaining imbalance
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance
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How Matching Works

• Notation:

Yi Dependent variable
Ti Treatment variable (0/1, or more general)
Xi Pre-treatment covariates

• Treatment Effect for treated (Ti = 1) observation i :

TEi = Yi (Ti = 1)−Yi (Ti = 0)

= observed −unobserved

• Estimate Yi (Ti = 0) with Yj from matched (Xi ≈ Xj)

controls Ŷi (Ti = 0) = Yj(Ti = 0) (or a model)

• Prune unmatched units to improve balance (so X is
unimportant)

• QoI: Sample Average Treatment effect on the Treated:

SATT = meani∈{Ti=1} (TEi )

• or Feasible Average Treatment effect on the Treated: FSATT
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controls Ŷi (Ti = 0) = Yj(Ti = 0) (or a model)

• Prune unmatched units to improve balance (so X is
unimportant)

• QoI: Sample Average Treatment effect on the Treated:

SATT = meani∈{Ti=1} (TEi )

• or Feasible Average Treatment effect on the Treated: FSATT
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Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)

• Distance(Xi ,Xj) =
√

(Xi − Xj)′S−1(Xi − Xj)
• Match each treated unit to the nearest control unit
• Control units: not reused; pruned if unused
• Prune matches if Distance>caliper

2. Estimation Difference in means or a model

3. Checking Measure imbalance, tweak, repeat, . . .
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Mahalanobis Distance Matching

Education (years)

Age
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Method 2: Propensity Score Matching

1. Preprocess (Matching)

• Reduce k elements of X to scalar
πi ≡ Pr(Ti = 1|X ) = 1

1+e−Xi β

• Distance(Xi ,Xj) = |πi − πj |
• Match each treated unit to the nearest control unit
• Control units: not reused; pruned if unused
• Prune matches if Distance>caliper

2. Estimation Difference in means or a model
3. Checking Measure imbalance, tweak, repeat, . . .
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Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

• Temporarily coarsen X as much as you’re willing

• e.g., Education (grade school, high school, college, graduate)
• Easy to understand, or can be automated as for a histogram

• Apply exact matching to the coarsened X , C (X )

• Sort observations into strata, each with unique values of C(X )
• Prune any stratum with 0 treated or 0 control units

• Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

• Need to weight controls in each stratum to equal treateds
• Can apply other matching methods within CEM strata (inherit

CEM’s properties)

3. Checking Determine matched sample size, tweak, repeat, . . .

• Easier, but still iterative
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Coarsened Exact Matching
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The Matching Frontier

• Bias-Variance trade off  Imbalance-n Trade Off

• Choose an imbalance metric

• Classic measure: Difference of means (for each variable)
• Mahalanobis Distance (average distance from each unit to the

closest in the other treatment regime)
• Difference of multivariate histograms (L1):

L1(f , g ;H) =
1

2

∑
`1···`k∈H(X)

|f`1···`k
− g`1···`k

|

• Difference of multivariate histograms (L2)

• The metric defines the “n-imbalance frontier” (lowest
imbalance for each n)

• Choose a matching solution (trading off bias and variance)

• Result: Optimal. No need to iterate. Choice of solution left to
researcher.
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Example Frontier, and Results
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Constructing the Mahalanobis Frontier
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Constructing the L1/L2 Frontier
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Foreign Aid Shocks & Conflict
King, Nielsen, Coberley, Pope, and Wells (2012)
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Healthways Data
King, Nielsen, Coberley, Pope, and Wells (2012)

49 / 56



Called/Not Called Data
King, Nielsen, Coberley, Pope, and Wells (2012)
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FDA Drug Approval Times
King, Nielsen, Coberley, Pope, and Wells (2012)
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Job Training (Lelonde Data)
King, Nielsen, Coberley, Pope, and Wells (2012)
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PSM Approximates Random Matching in Balanced Data
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Destroying CEM with PSM’s Two Step Approach
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Conclusions

• The Matching Frontier

• Easy to use; no need to iterate
• No need to choose among matching methods
• Optimal results for your imbalance metric

• Propensity score matching:

• The problem:

• Imbalance can be worse than original data
• Can increase imbalance when removing the worst matches
• Approximates random matching in well-balanced data

(Random matching increases imbalance)

• Implications:

• Balance checking required
• Adjusting for potentially irrelevant covariates with PSM:

mistake
• Adjusting experimental data with PSM: mistake
• Reestimating the propensity score after eliminating

noncommon support: mistake
• 1/4 caliper on propensity score: mistake

• Software on its way · · ·
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