# Simplifying Causal Inference

 $\mathsf{Gary}\ \mathsf{King}^1$ 

Institute for Quantitative Social Science Harvard University

(Talk at the Centre on Population Dynamics, McGill University, 3/1/2013)

<sup>&</sup>lt;sup>1</sup>GaryKing.org

• Problem: Model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)
- $\bullet \ \rightsquigarrow$  Lots of insights revealed in the process

Replication: Doyle and Sambanis, APSR 2000

• Data: 124 Post-World War II civil wars

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

| Two Logit Models, Apparently Similar Results |                              |       |       |         |       |       |
|----------------------------------------------|------------------------------|-------|-------|---------|-------|-------|
| Ŭ                                            | Original "Interactive" Model |       |       |         |       |       |
| Variables                                    | Coeff                        | SE    | P-val | Coeff   | SE    | P-val |
| Wartype                                      | -1.742                       | .609  | .004  | -1.666  | .606  | .006  |
| Logdead                                      | 445                          | .126  | .000  | 437     | .125  | .000  |
| Wardur                                       | .006                         | .006  | .258  | .006    | .006  | .342  |
| Factnum                                      | -1.259                       | .703  | .073  | -1.045  | .899  | .245  |
| Factnum2                                     | .062                         | .065  | .346  | .032    | .104  | .756  |
| Trnsfcap                                     | .004                         | .002  | .010  | .004    | .002  | .017  |
| Develop                                      | .001                         | .000  | .065  | .001    | .000  | .068  |
| Exp                                          | -6.016                       | 3.071 | .050  | -6.215  | 3.065 | .043  |
| Decade                                       | 299                          | .169  | .077  | -0.284  | .169  | .093  |
| Treaty                                       | 2.124                        | .821  | .010  | 2.126   | .802  | .008  |
| UNOP4                                        | 3.135                        | 1.091 | .004  | .262    | 1.392 | .851  |
| Wardur*UNOP4                                 |                              | —     |       | .037    | .011  | .001  |
| Constant                                     | 8.609                        | 2.157 | 0.000 | 7.978   | 2.350 | .000  |
| N                                            |                              | 122   |       |         | 122   |       |
| Log-likelihood                               | -45.649                      |       |       | -44.902 |       |       |
| Pseudo R <sup>2</sup>                        |                              | .423  |       |         | .433  |       |

#### Doyle and Sambanis: Model Dependence





(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)



(King and Zeng, 2006: fig.4 Political Analysis)



(King and Zeng, 2006: fig.4 Political Analysis)



• Preprocess I: Eliminate extrapolation region

(King and Zeng, 2006: fig.4 Political Analysis)



What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region

(King and Zeng, 2006: fig.4 Political Analysis)



What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

12 / 58

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



Outcome

13 / 58

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)



### Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance

• Notation:

Y<sub>i</sub> Dependent variable

- $Y_i$  Dependent variable
- $T_i$  Treatment variable (0/1, or more general)

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- X<sub>i</sub> Pre-treatment covariates

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- X<sub>i</sub> Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$\mathsf{TE}_i = Y_i(T_i = 1) - \frac{Y_i(T_i = 0)}{2}$$

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$
  
= observed -unobserved

• Notation:

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$
  
= observed -unobserved

• Estimate  $Y_i(T_i = 0)$  with  $Y_j$  from matched  $(X_i \approx X_j)$  controls  $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$  or a model  $\hat{Y}_i(T_i = 0) = \hat{g}_0(X_j)$ 

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$
  
= observed -unobserved

- Estimate  $Y_i(T_i = 0)$  with  $Y_j$  from matched  $(X_i \approx X_j)$  controls  $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$  or a model  $\hat{Y}_i(T_i = 0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$
  
= observed -unobserved

- Estimate  $Y_i(T_i = 0)$  with  $Y_j$  from matched  $(X_i \approx X_j)$  controls  $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$  or a model  $\hat{Y}_i(T_i = 0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$SATT = mean_{i \in \{T_i=1\}} (TE_i)$$

• Notation:

- Y<sub>i</sub> Dependent variable
- $T_i$  Treatment variable (0/1, or more general)
- $X_i$  Pre-treatment covariates
- Treatment Effect for treated  $(T_i = 1)$  observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$
  
= observed -unobserved

- Estimate  $Y_i(T_i = 0)$  with  $Y_j$  from matched  $(X_i \approx X_j)$  controls  $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$  or a model  $\hat{Y}_i(T_i = 0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

 $SATT = mean_{i \in \{T_i=1\}} (TE_i)$ 

• or Feasible Average Treatment effect on the Treated: FSATT

1. Preprocess (Matching)

- 1. Preprocess (Matching)
  - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1} (X_i X_j)}$

- 1. Preprocess (Matching)
  - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
  - Match each treated unit to the nearest control unit

- 1. Preprocess (Matching)
  - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
  - Match each treated unit to the nearest control unit
  - Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
  - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
  - Match each treated unit to the nearest control unit
  - Control units: not reused; pruned if unused
  - Prune matches if Distance>*caliper*
- 2. Estimation Difference in means or a model







Education (years)



Education (years)



22 / 58



Education (years)



24 / 58

1. Preprocess (Matching)

#### 1. Preprocess (Matching)

• Reduce k elements of X to scalar 
$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

#### 1. Preprocess (Matching)

• Reduce k elements of X to scalar  $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i \beta}}$ 

• Distance
$$(X_i, X_j) = |\pi_i - \pi_j|$$

- 1. Preprocess (Matching)
  - Reduce k elements of X to scalar  $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$
  - Distance $(X_i, X_j) = |\pi_i \pi_j|$
  - Match each treated unit to the nearest control unit

#### 1. Preprocess (Matching)

- Reduce k elements of X to scalar  $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

#### 1. Preprocess (Matching)

- Reduce k elements of X to scalar  $\pi_i \equiv \Pr(T_i = 1 | X) = \frac{1}{1 + e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- · Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model

### **Propensity Score Matching**



Education (years)

### **Propensity Score Matching**



### **Propensity Score Matching**













Education (years)

1. Preprocess (Matching)

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)
    - Sort observations into strata, each with unique values of C(X)

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)
    - Sort observations into strata, each with unique values of C(X)
    - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)
    - Sort observations into strata, each with unique values of C(X)
    - Prune any stratum with 0 treated or 0 control units
  - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)
    - Sort observations into strata, each with unique values of C(X)
    - Prune any stratum with 0 treated or 0 control units
  - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
  - Need to weight controls in each stratum to equal treateds

- 1. Preprocess (Matching)
  - Temporarily coarsen X as much as you're willing
    - e.g., Education (grade school, high school, college, graduate)
    - Easy to understand, or can be automated as for a histogram
  - Apply exact matching to the coarsened X, C(X)
    - Sort observations into strata, each with unique values of C(X)
    - Prune any stratum with 0 treated or 0 control units
  - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
  - Need to weight controls in each stratum to equal treateds
  - Can apply other matching methods within CEM strata (inherit CEM's properties)









39 / 58





Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-*n* Trade Off

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-*n* Trade Off
- Measuring Imbalance

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-*n* Trade Off
- Measuring Imbalance
  - Classic measure: Difference of means (for each variable)

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-*n* Trade Off
- Measuring Imbalance
  - Classic measure: Difference of means (for each variable)
  - Mahalanobis Distance

- Bias (& model dependence) = f(imbalance...)
  → we measure imbalance instead
- Variance = f(matched sample size...)
  → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-*n* Trade Off
- Measuring Imbalance
  - Classic measure: Difference of means (for each variable)
  - Mahalanobis Distance
  - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

• MDM & PSM: Choose matched *n*, match, check imbalance

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Given matched solution ~> matching method is irrelevant

## Comparing Matching Methods

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Given matched solution → matching method is irrelevant
- Our idea: Identify the *frontier*: lowest imbalance for each *n*; then choose a matching solution

#### A Space Graph: Foreign Aid Shocks & Conflict King, Nielsen, Coberley, Pope, and Wells (2012)

#### Imbalance Metric Mahalanobis Discrepancy L Difference in Means 4 0.30 0.8 g published PSM with 1/4 sd caliper 0.20 20 published PSM published PSM with 1/4 sd caliper 0.4 published PSM 0.10 published PSM 5 published PSM wit 1/4 sd caliper 0.0 0.0 0 2500 1500 500 Ó 2500 1500 500 Ó 2500 1500 500 Ó N of Matched Sample N of Matched Sample N of Matched Sample "Best Practices" PSM 0 Raw Data MDM PSM Random Pruning CEM

#### A Space Graph: Healthways Data King, Nielsen, Coberley, Pope, and Wells (2012)



# A Space Graph: Called/Not Called Data

King, Nielsen, Coberley, Pope, and Wells (2012)



#### A Space Graph: FDA Drug Approval Times King, Nielsen, Coberley, Pope, and Wells (2012)



#### A Space Graph: Job Training (Lelonde Data) King, Nielsen, Coberley, Pope, and Wells (2012)



#### A Space Graph: Simulated Data — Mahalanobis



#### A Space Graph: Simulated Data — CEM



#### A Space Graph: Simulated Data — Propensity Score



#### PSM Approximates Random Matching in Balanced Data



**CEM Weight:** 
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

**CEM Weight**: 
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

**CEM Pscore:**  $\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$ 

**CEM Weight**: 
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore: 
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow$  CEM:

**CEM Weight**: 
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore: 
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow \mathsf{CEM}:$ 

• Gives a better pscore than PSM

**CEM Weight:** 
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore: 
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow$  CEM:

- Gives a better pscore than PSM
- Doesn't match based on crippled information

#### Destroying CEM with PSM's Two Step Approach



• Propensity score matching:

- Propensity score matching:
  - The problem:

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake
    - Reestimating the propensity score after eliminating noncommon support: mistake

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake
    - Reestimating the propensity score after eliminating noncommon support: mistake
    - 1/4 caliper on propensity score: mistake

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake
    - Reestimating the propensity score after eliminating noncommon support: mistake
    - 1/4 caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake
    - Reestimating the propensity score after eliminating noncommon support: mistake
    - 1/4 caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems
- (Your performance may vary)

- Propensity score matching:
  - The problem:
    - Imbalance can be worse than original data
    - · Can increase imbalance when removing the worst matches
    - Approximates random matching in well-balanced data (Random matching increases imbalance)
  - The Cause: unnecessary 1st stage dimension reduction
  - Implications:
    - Balance checking required
    - Adjusting for potentially irrelevant covariates with PSM: mistake
    - Adjusting experimental data with PSM: mistake
    - Reestimating the propensity score after eliminating noncommon support: mistake
    - 1/4 caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems
- (Your performance may vary)
- You can easily check with the Space Graph

For papers, software (for R, Stata, & SPSS), tutorials, etc.



GaryKing.org/cem

#### Data where PSM Works Reasonably Well — PSM & MDM



#### Data where PSM Works Reasonably Well — CEM

