Simplifying Causal Inference

Gary King ${ }^{1}$
Institute for Quantitative Social Science
Harvard University

(Talk at the Centre on Population Dynamics, McGill University, 3/1/2013)

Overview

Overview

- Problem: Model dependence (review)

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us choose

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)

Overview

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods \& specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)
- \rightsquigarrow Lots of insights revealed in the process

Model Dependence Example

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logit Models, Apparently Similar Results

Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	. 609	. 004	-1.666	. 606	. 006
Logdead	-. 445	. 126	. 000	-. 437	. 125	. 000
Wardur	. 006	. 006	. 258	. 006	. 006	. 342
Factnum	-1.259	. 703	. 073	-1.045	. 899	. 245
Factnum2	. 062	. 065	. 346	. 032	. 104	. 756
Trnsfcap	. 004	. 002	. 010	. 004	. 002	. 017
Develop	. 001	. 000	. 065	. 001	. 000	. 068
Exp	-6.016	3.071	. 050	-6.215	3.065	. 043
Decade	-. 299	. 169	. 077	-0.284	. 169	. 093
Treaty	2.124	. 821	. 010	2.126	. 802	. 008
UNOP4	3.135	1.091	. 004	. 262	1.392	. 851
Wardur*UNOP4	-	-	-	. 037	. 011	. 001
Constant	8.609	2.157	0.000	7.978	2.350	. 000
N	122			122		
Log-likelihood	-45.649			-44.902		
Pseudo R^{2}	. 423			. 433		

Doyle and Sambanis: Model Dependence

Counterfactual Prediction

Model Dependence: A Simpler Example

Model Dependence: A Simpler Example

 (King and Zeng, 2006: fig. 4 Political Analysis)
Model Dependence: A Simpler Example

(King and Zeng, 2006: fig. 4 Political Analysis)

Model Dependence: A Simpler Example

 (King and Zeng, 2006: fig. 4 Political Analysis)

What to do?

Model Dependence: A Simpler Example

 (King and Zeng, 2006: fig. 4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region

Model Dependence: A Simpler Example

 (King and Zeng, 2006: fig. 4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region

Model Dependence: A Simpler Example

 (King and Zeng, 2006: fig. 4 Political Analysis)

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching within the Interpolation Region

 (Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)Matching reduces model dependence, bias, and variance

How Matching Works

How Matching Works

- Notation:

How Matching Works

- Notation:
Y_{i} Dependent variable

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable ($0 / 1$, or more general)

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable (0/1, or more general)
X_{i} Pre-treatment covariates

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable (0/1, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable (0/1, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\mathrm{TE}_{i}=Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right)
$$

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable (0/1, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable ($0 / 1$, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}\left(T_{i}=0\right)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}\left(T_{i}=0\right)=Y_{j}\left(T_{i}=0\right)$ or a model $\hat{Y}_{i}\left(T_{i}=0\right)=\hat{g}_{0}\left(X_{j}\right)$

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable ($0 / 1$, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}\left(T_{i}=0\right)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}\left(T_{i}=0\right)=Y_{j}\left(T_{i}=0\right)$ or a model $\hat{Y}_{i}\left(T_{i}=0\right)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so X is unimportant)

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable ($0 / 1$, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}\left(T_{i}=0\right)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}\left(T_{i}=0\right)=Y_{j}\left(T_{i}=0\right)$ or a model $\hat{Y}_{i}\left(T_{i}=0\right)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

How Matching Works

- Notation:
Y_{i} Dependent variable
T_{i} Treatment variable ($0 / 1$, or more general)
X_{i} Pre-treatment covariates
- Treatment Effect for treated ($T_{i}=1$) observation i :

$$
\begin{aligned}
\mathrm{TE}_{i} & =Y_{i}\left(T_{i}=1\right)-Y_{i}\left(T_{i}=0\right) \\
& =\text { observed } \quad-\text { unobserved }
\end{aligned}
$$

- Estimate $Y_{i}\left(T_{i}=0\right)$ with Y_{j} from matched $\left(X_{i} \approx X_{j}\right)$ controls $\hat{Y}_{i}\left(T_{i}=0\right)=Y_{j}\left(T_{i}=0\right)$ or a model $\hat{Y}_{i}\left(T_{i}=0\right)=\hat{g}_{0}\left(X_{j}\right)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$
\text { SATT }=\operatorname{mean}_{i \in\left\{T_{i}=1\right\}}\left(\mathrm{TE}_{i}\right)
$$

- or Feasible Average Treatment effect on the Treated: FSATT

Method 1: Mahalanobis Distance Matching

Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model

Method 1: Mahalanobis Distance Matching

1. Preprocess (Matching)

- Distance $\left(X_{i}, X_{j}\right)=\sqrt{\left(X_{i}-X_{j}\right)^{\prime} S^{-1}\left(X_{i}-X_{j}\right)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model

Mahalanobis Distance Matching

Education (years)

Method 2: Propensity Score Matching

Method 2: Propensity Score Matching

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$

2. Estimation Difference in means or a model

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-x_{i} \beta}}$
- $\operatorname{Distance}\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$

2. Estimation Difference in means or a model

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit

2. Estimation Difference in means or a model

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}$
- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused

2. Estimation Difference in means or a model

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- Reduce k elements of X to scalar

$$
\pi_{i} \equiv \operatorname{Pr}\left(T_{i}=1 \mid X\right)=\frac{1}{1+e^{-X_{i} \beta}}
$$

- Distance $\left(X_{i}, X_{j}\right)=\left|\pi_{i}-\pi_{j}\right|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper

2. Estimation Difference in means or a model

Propensity Score Matching

Education (years)

Propensity Score Matching

Education (years)

Propensity Score Matching

Propensity
Education (years) Score

Propensity Score Matching

Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Propensity
Education (years)

Propensity Score Matching

Education (years)

Method 3: Coarsened Exact Matching

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)
2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

- Need to weight controls in each stratum to equal treateds

Method 3: Coarsened Exact Matching

1. Preprocess (Matching)

- Temporarily coarsen X as much as you're willing
- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened $X, C(X)$
- Sort observations into strata, each with unique values of $C(X)$
- Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned

2. Estimation Difference in means or a model

- Need to weight controls in each stratum to equal treateds
- Can apply other matching methods within CEM strata (inherit CEM's properties)

Coarsened Exact Matching

Coarsened Exact Matching

Education

The Bias-Variance Trade Off in Matching

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead
- Variance $=f$ (matched sample size...)
\rightsquigarrow we measure matched sample size instead

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead
- Variance $=f$ (matched sample size...) \rightsquigarrow we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead
- Variance $=f($ matched sample size. . . $)$ \rightsquigarrow we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off
- Measuring Imbalance

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead
- Variance $=f$ (matched sample size...) \rightsquigarrow we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off
- Measuring Imbalance
- Classic measure: Difference of means (for each variable)

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...) \rightsquigarrow we measure imbalance instead
- Variance $=f$ (matched sample size...)
\rightsquigarrow we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off
- Measuring Imbalance
- Classic measure: Difference of means (for each variable)
- Mahalanobis Distance

The Bias-Variance Trade Off in Matching

- Bias (\& model dependence) $=f$ (imbalance...)
\rightsquigarrow we measure imbalance instead
- Variance $=f$ (matched sample size...)
\rightsquigarrow we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance- n Trade Off
- Measuring Imbalance
- Classic measure: Difference of means (for each variable)
- Mahalanobis Distance
- Difference of multivariate histograms (L1):

$$
\mathcal{L}_{1}(f, g ; H)=\frac{1}{2} \sum_{\ell_{1} \cdots \ell_{k} \in H(\mathbf{X})}\left|f_{\ell_{1} \cdots \ell_{k}}-g_{\ell_{1} \cdots \ell_{k}}\right|
$$

Comparing Matching Methods

Comparing Matching Methods

- MDM \& PSM: Choose matched n, match, check imbalance

Comparing Matching Methods

- MDM \& PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n

Comparing Matching Methods

- MDM \& PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate

Comparing Matching Methods

- MDM \& PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Given matched solution \rightsquigarrow matching method is irrelevant

Comparing Matching Methods

- MDM \& PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Given matched solution \rightsquigarrow matching method is irrelevant
- Our idea: Identify the frontier: lowest imbalance for each n; then choose a matching solution

A Space Graph: Foreign Aid Shocks \& Conflict King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Mahalanobis Discrepancy

L_{1}
Difference in Means

\circ	Raw Data	-	"Best Practices" PSM
\cdots	Random Pruning	-	MDM
CSM			

A Space Graph: Healthways Data

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Mahalanobis Discrepancy	L_{1}	Difference in Means
- Raw Data - Random Pruning	\qquad "Best Practices" PSM \qquad PSM	MDM \qquad CEM

A Space Graph: Called/Not Called Data

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Mahalanobis Discrepancy	L_{1}	Difference in Means
N of Matched Sample	N of Matched Sample	N of Matched Sample
- Raw Data ...- Random Pruning	\qquad "Best Practices" PSM \qquad PSM	\square MDM \qquad CEM

A Space Graph: FDA Drug Approval Times

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Mahalanobis Discrepancy	L_{1}	Difference in Means
- Raw Data - Random Pruning	\qquad "Best Practices" PSM - PSM	$\begin{aligned} & \text { - } \\ & \text { MDM } \\ & \text { CEM } \end{aligned}$

A Space Graph: Job Training (Lelonde Data) King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Mahalanobis Discrepancy	L_{1}	Difference in Means
- Raw Data - Random Pruning	\qquad "Best Practices" PSM \qquad PSM	MDM \qquad CEM

A Space Graph: Simulated Data - Mahalanobis

MDM: 3 Covariates

A Space Graph: Simulated Data - CEM

CEM: 1 Covariate

CEM: 2 Covariates

CEM: 3 Covariates

A Space Graph: Simulated Data - Propensity Score

PSM: 3 Covariates

PSM Approximates Random Matching in Balanced Data

- PSM Matches
--- CEM and MDM Matches

CEM Weights and Nonparametric Propensity Score

$$
\text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad(+ \text { normalization })
$$

CEM Weights and Nonparametric Propensity Score

$$
\text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad(+ \text { normalization })
$$

CEM Pscore: $\quad \widehat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}$

CEM Weights and Nonparametric Propensity Score

$$
\text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad(+ \text { normalization })
$$

CEM Pscore: $\quad \widehat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}$
\rightsquigarrow CEM:

CEM Weights and Nonparametric Propensity Score

$$
\begin{aligned}
& \text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad \text { (+ normalization) } \\
& \text { CEM Pscore: } \hat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}
\end{aligned}
$$

\rightsquigarrow CEM:

- Gives a better pscore than PSM

CEM Weights and Nonparametric Propensity Score

$$
\begin{aligned}
& \text { CEM Weight: } \quad w_{i}=\frac{m_{i}^{T}}{m_{i}^{C}} \quad \text { (+ normalization) } \\
& \text { CEM Pscore: } \hat{\operatorname{Pr}}\left(T_{i}=1 \mid X_{i}\right)=\frac{m_{i}^{T}}{m_{i}^{T}+m_{i}^{C}}
\end{aligned}
$$

\rightsquigarrow CEM:

- Gives a better pscore than PSM
- Doesn't match based on crippled information

Destroying CEM with PSM's Two Step Approach

--.- CEM Matches

- CEM-generated PSM Matches

Conclusions

Conclusions

- Propensity score matching:

Conclusions

- Propensity score matching:
- The problem:

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake
- Reestimating the propensity score after eliminating noncommon support: mistake

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake
- Reestimating the propensity score after eliminating noncommon support: mistake
- $1 / 4$ caliper on propensity score: mistake

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake
- Reestimating the propensity score after eliminating noncommon support: mistake
- $1 / 4$ caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake
- Reestimating the propensity score after eliminating noncommon support: mistake
- $1 / 4$ caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems
- (Your performance may vary)

Conclusions

- Propensity score matching:
- The problem:
- Imbalance can be worse than original data
- Can increase imbalance when removing the worst matches
- Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
- Balance checking required
- Adjusting for potentially irrelevant covariates with PSM: mistake
- Adjusting experimental data with PSM: mistake
- Reestimating the propensity score after eliminating noncommon support: mistake
- $1 / 4$ caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems
- (Your performance may vary)
- You can easily check with the Space Graph

For papers, software (for R, Stata, \& SPSS), tutorials, etc.

GaryKing.org/cem

Data where PSM Works Reasonably Well - PSM \& MDM

Data where PSM Works Reasonably Well - CEM

