Optimizing Balance and Sample Size in Matching Methods for Causal Inference¹

Gary King²

Institute for Quantitative Social Science Harvard University

(Talk at UCLA, 3/1/2013)

¹Joint work with Christopher Lucas and Richard Nielsen

²GaryKing.org.

• Problem: Model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix n and don't guarantee imbalance

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix n and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix *n* and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: A commonly used method increases imbalance!

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching methods optimize only 1 of 2 parameters
 - Some fix n and don't guarantee imbalance
 - Others fix imbalance and don't guarantee n
 - (Plus: Matching methods optimize a different "imbalance" thanks post-hoc checks)
- Solution: A New Approach Easier & More Powerful
 - We estimate the "n-imbalance frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: A commonly used method increases imbalance!
 - Solution: Other methods & our approach do not share this problem

Replication: Doyle and Sambanis, APSR 2000 (King and Zeng, 2007)

• Data: 124 Post-World War II civil wars

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...
- Counterfactual question: Switch UN intervention for each war

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logit Models, Apparently Similar Results

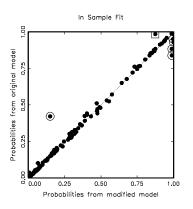
0	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4	_		_	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	
Log-likelihood		-45.649			-44.902	

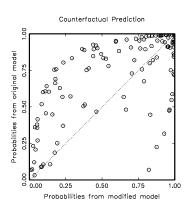
.423

Pseudo R^2

.433

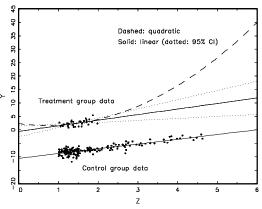
Doyle and Sambanis: Model Dependence



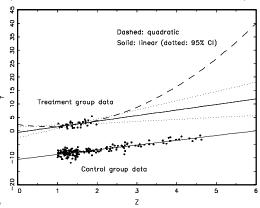


(King and Zeng, 2006: fig.4 Political Analysis)

(King and Zeng, 2006: fig.4 Political Analysis)

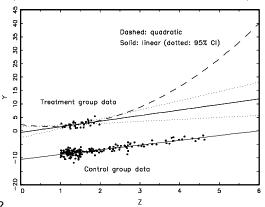


(King and Zeng, 2006: fig.4 Political Analysis)



What to do?

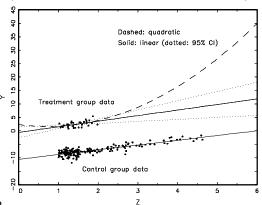
(King and Zeng, 2006: fig.4 Political Analysis)



What to do?

Preprocess I: Eliminate extrapolation region

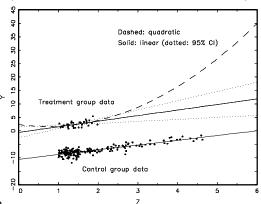
(King and Zeng, 2006: fig.4 Political Analysis)



What to do?

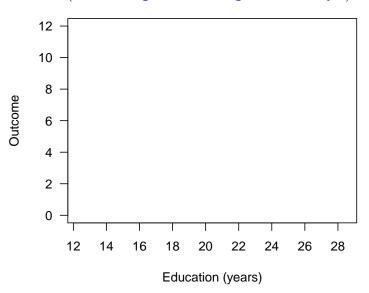
- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region

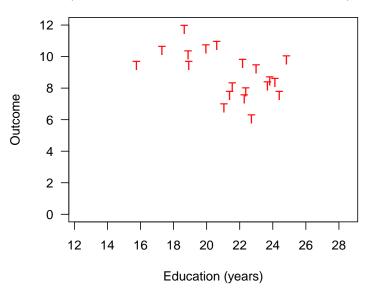
(King and Zeng, 2006: fig.4 Political Analysis)

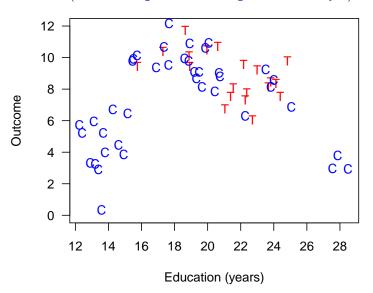


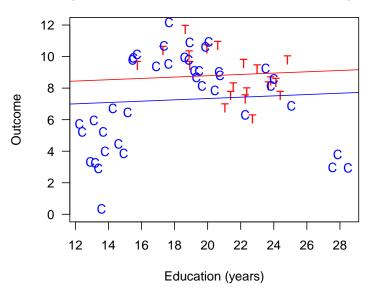
What to do?

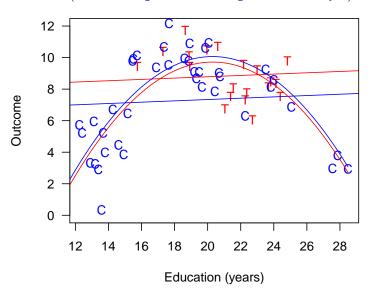
- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

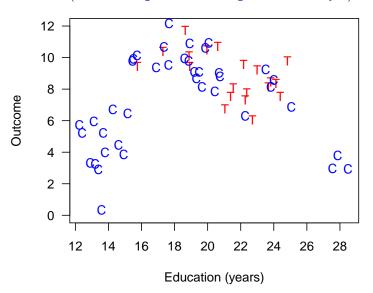


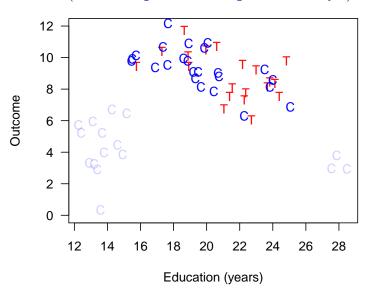


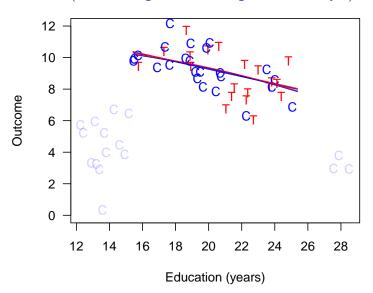












(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance

• Notation:

• Notation:

 Y_i Dependent variable

• Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates

Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

X_i Pre-treatment covariates

Notation:

Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

$$\mathsf{TE}_i = Y_i(T_i = 1) - \frac{Y_i(T_i = 0)}{2}$$

Notation:

Yi Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

Notation:

Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

• Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)

Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)

Notation:

Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i = 1\}} \left(\mathsf{TE}_i \right)$$

Notation:

Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

• Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- QoI: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i = 1\}} \left(\mathsf{TE}_i \right)$$

or Feasible Average Treatment effect on the Treated: FSATT

1. Preprocess (Matching)

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

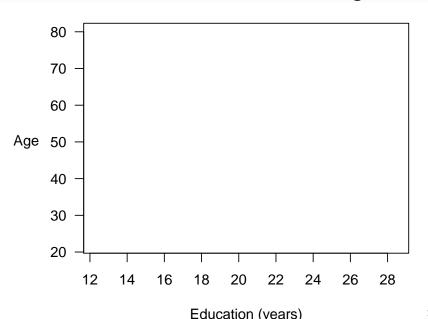
- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit

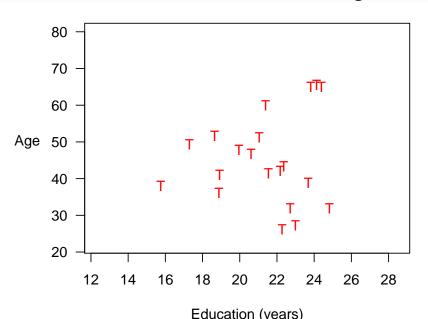
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

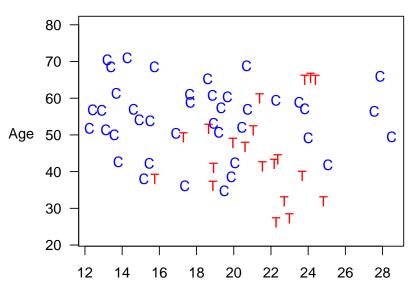
- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

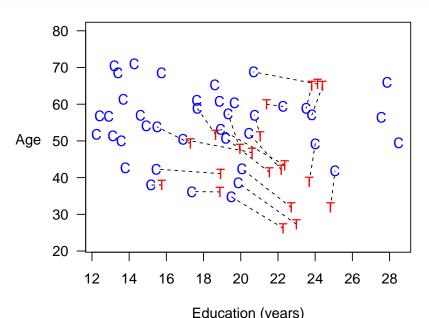
- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

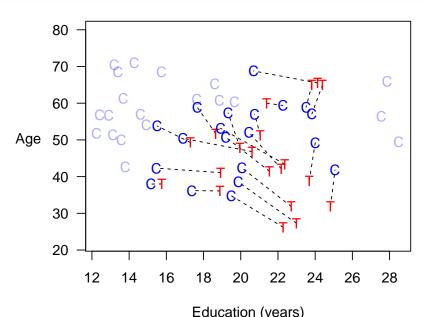
- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

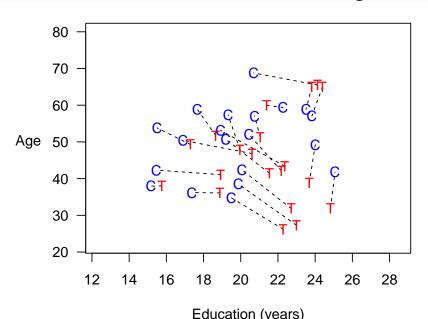


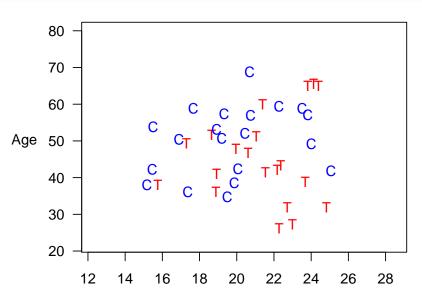












Method 2: Propensity Score Matching

Method 2: Propensity Score Matching

1. Preprocess (Matching)

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

Method 2: Propensity Score Matching

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$
• Distance(X: X:) = $|\pi_i - \pi_i|$

• Distance $(X_i, X_i) = |\pi_i - \pi_i|$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_i, X_i) = |\pi_i \pi_i|$
 - Match each treated unit to the nearest control unit

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

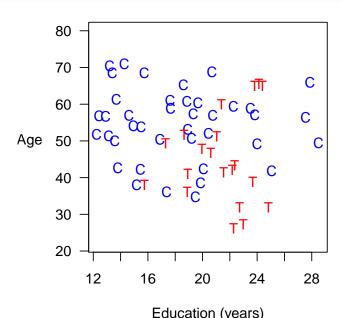
- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_i, X_i) = |\pi_i \pi_i|$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

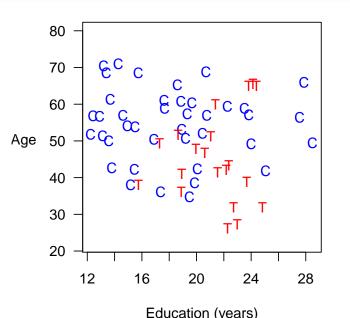
- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

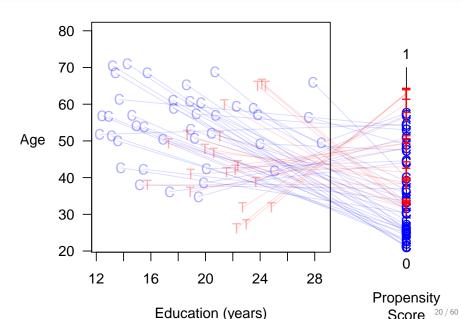
$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

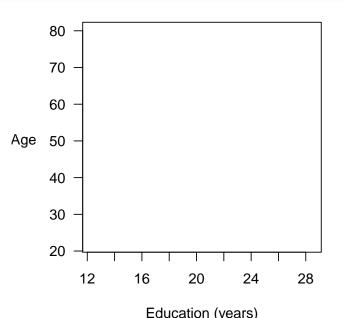
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

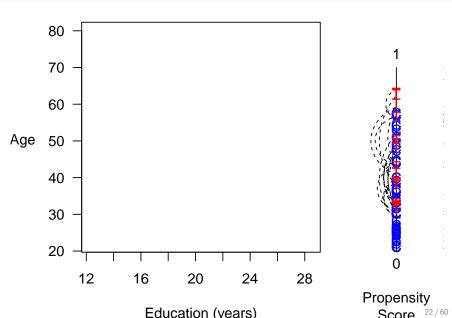
- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
 - Distance $(X_i, X_i) = |\pi_i \pi_i|$
 - Match each treated unit to the nearest control unit.
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...



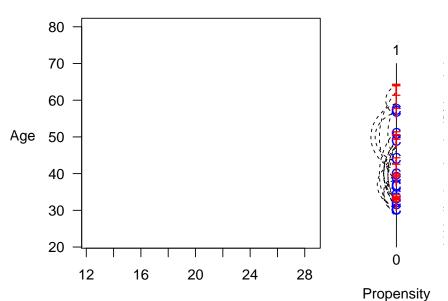






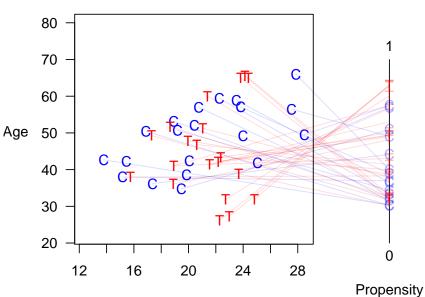


Score



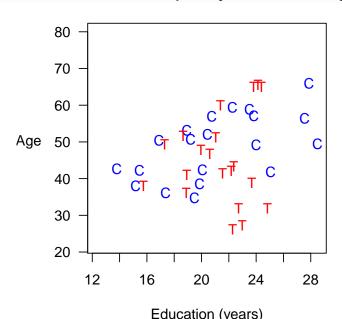
Education (years)

Score ^{23/60}



Education (vears)

Score 24/60



1. Preprocess (Matching)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

2. Estimation Difference in means or a model

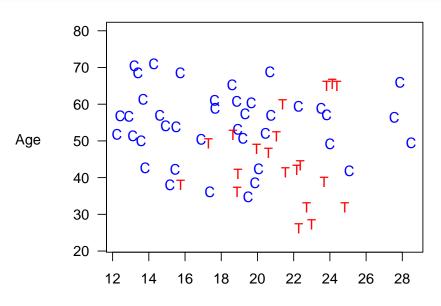
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

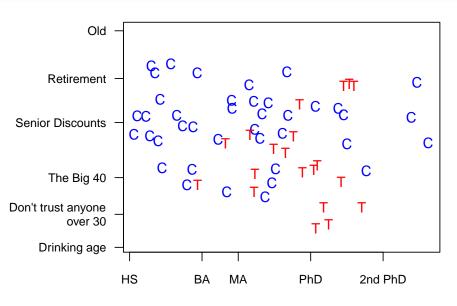
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

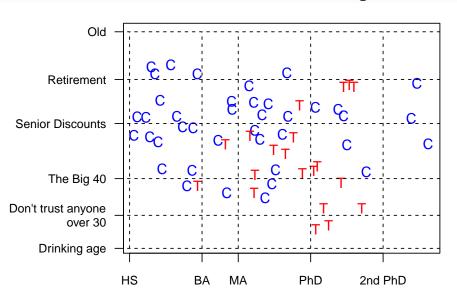
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
- 3. Checking Determine matched sample size, tweak, repeat, ...

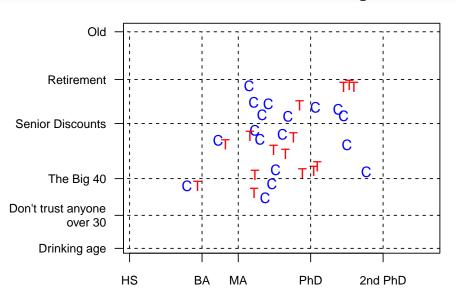
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...

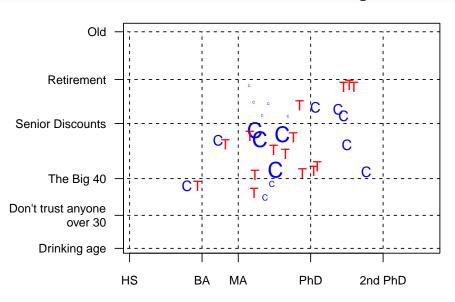
- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...
 - Easier, but still iterative

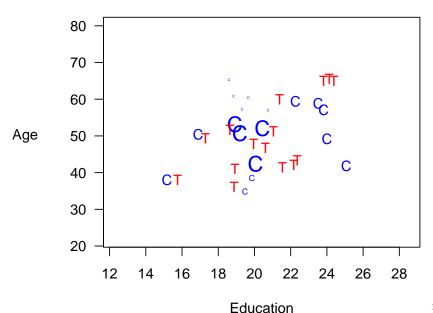












Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead

- Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead

- Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead

- Bias (& model dependence) = f(imbalance...)

 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-n Trade Off
- Measuring Imbalance

- Bias (& model dependence) = f(imbalance...)

 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-n Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)

- Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-n Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)

- Bias (& model dependence) = f(imbalance...)
 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-n Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Bias (& model dependence) = f(imbalance...)

 → we measure imbalance instead
- Variance = f(matched sample size...)
 → we measure matched sample size instead
- Bias-Variance trade off → Imbalance-n Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

• Difference of multivariate histograms (L2)

• Bias-Variance trade off → Imbalance-*n* Trade Off

- Bias-Variance trade off → Imbalance-n Trade Off
- Choose an imbalance metric

- Bias-Variance trade off → Imbalance-n Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)

- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)

- Bias-Variance trade off → Imbalance-n Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Bias-Variance trade off → Imbalance-n Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

• Difference of multivariate histograms (L2)

- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- Difference of multivariate histograms (L2)
- The metric defines the "n-imbalance frontier" (lowest imbalance for each n)

- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

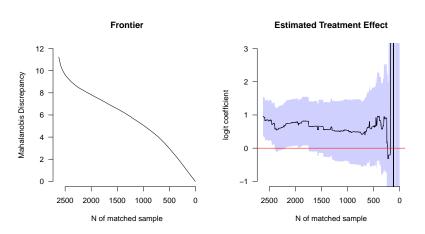
- Difference of multivariate histograms (L2)
- The metric defines the "n-imbalance frontier" (lowest imbalance for each n)
- Choose a matching solution (trading off bias and variance)

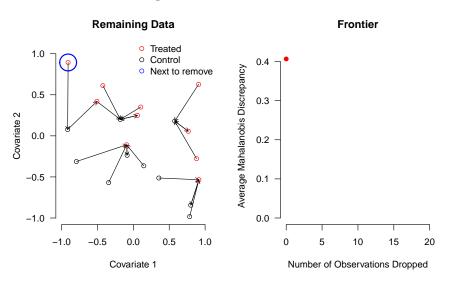
- Bias-Variance trade off → Imbalance-n Trade Off
- Choose an imbalance metric
 - Classic measure: Difference of means (for each variable)
 - Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L1):

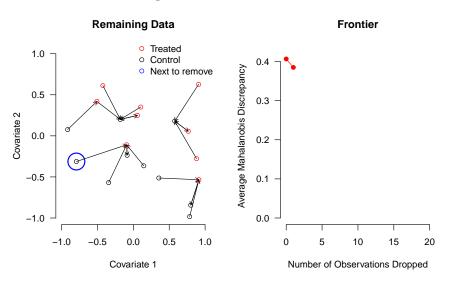
$$\mathcal{L}_1(f,g;H) = \frac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

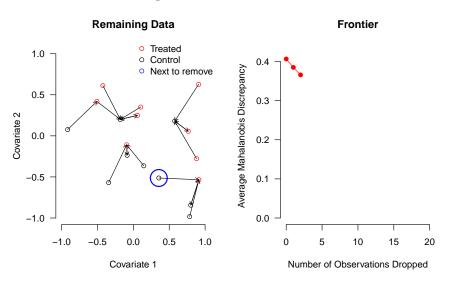
- Difference of multivariate histograms (L2)
- The metric defines the "n-imbalance frontier" (lowest imbalance for each n)
- Choose a matching solution (trading off bias and variance)
- Result: Optimal. No need to iterate. Choice of solution left to researcher.

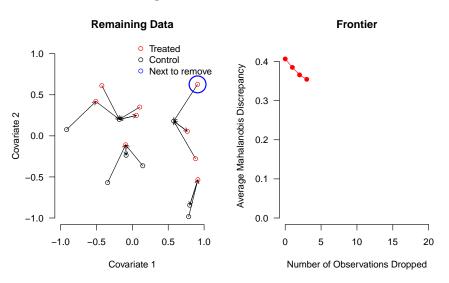
Example Frontier, and Results

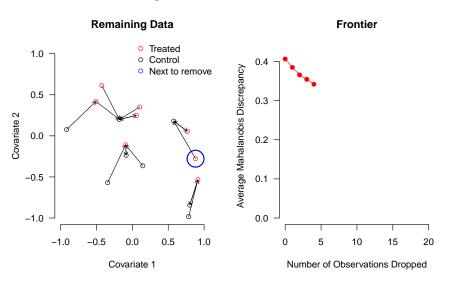


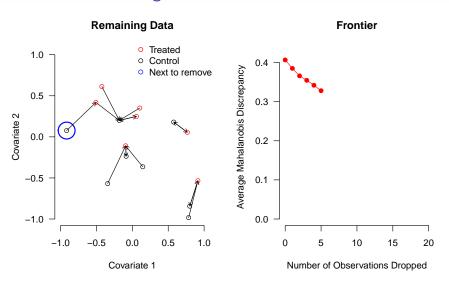


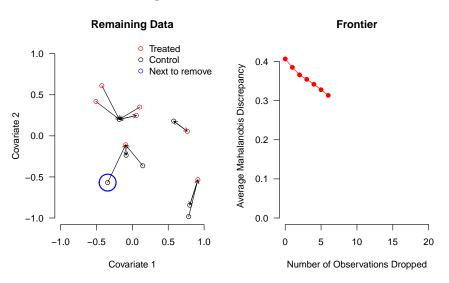


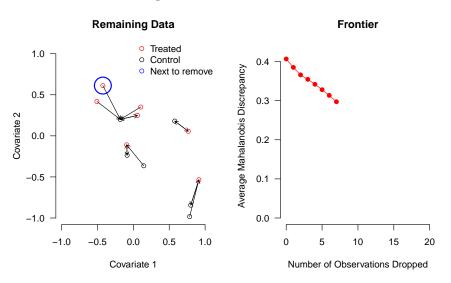


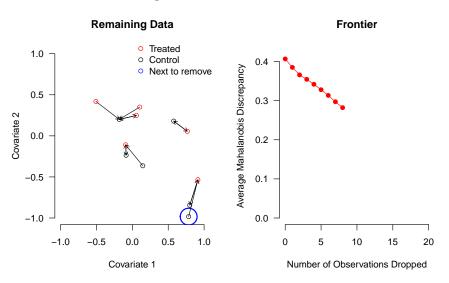


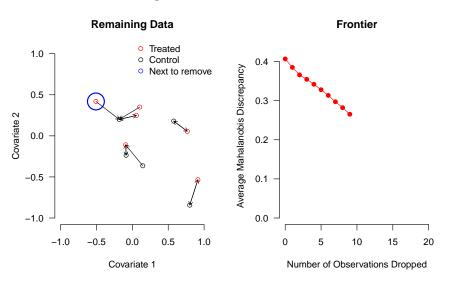


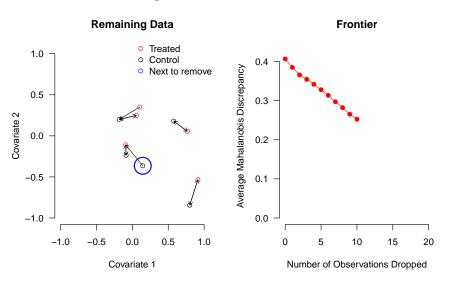


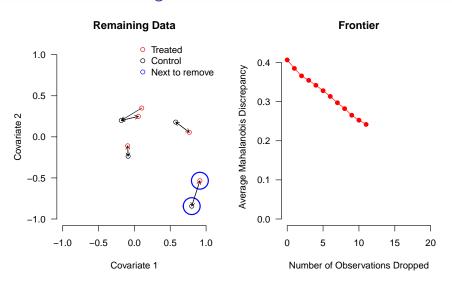


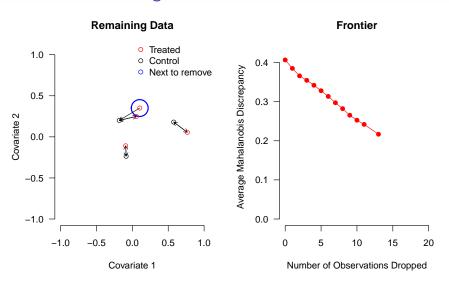


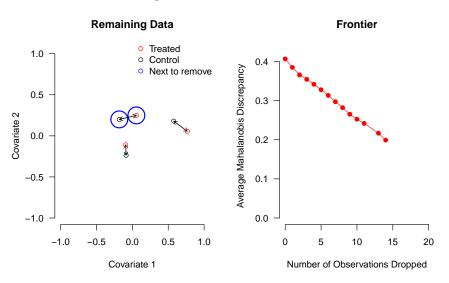


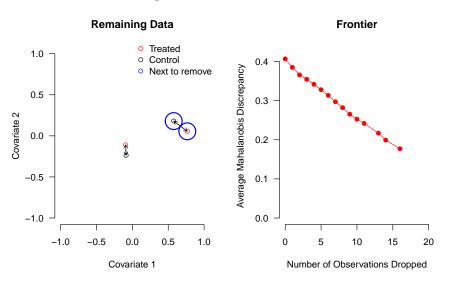


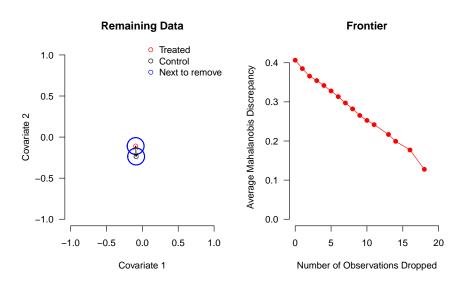




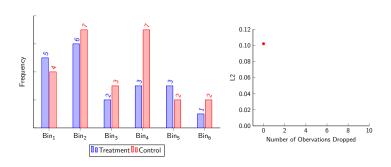




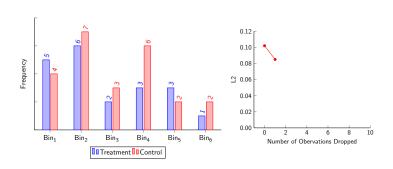




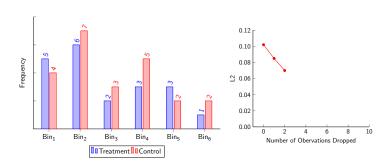
Constructing the L1/L2 Frontier

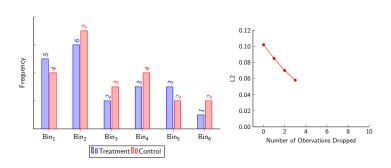


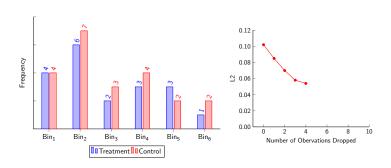
Constructing the L1/L2 Frontier

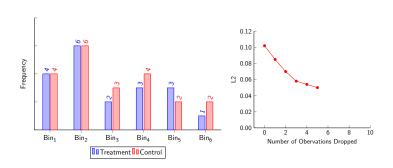


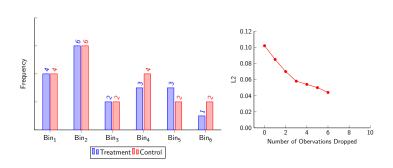
Constructing the L1/L2 Frontier

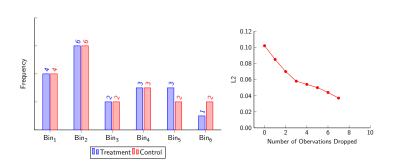


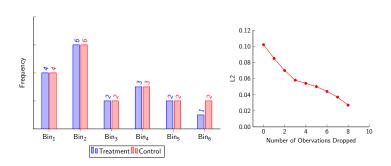


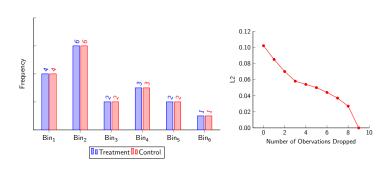


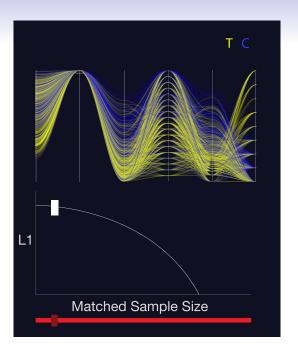






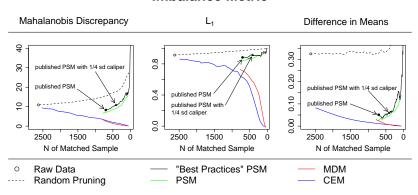






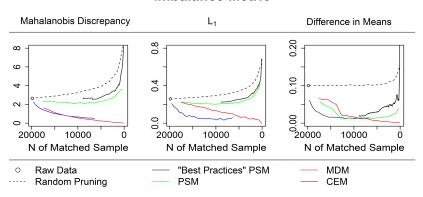
Foreign Aid Shocks & Conflict

King, Nielsen, Coberley, Pope, and Wells (2012)



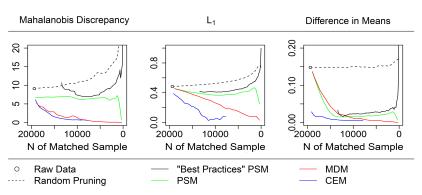
Healthways Data

King, Nielsen, Coberley, Pope, and Wells (2012)



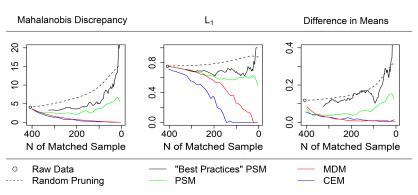
Called/Not Called Data

King, Nielsen, Coberley, Pope, and Wells (2012)



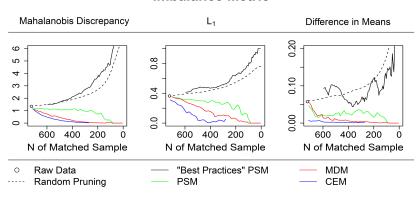
FDA Drug Approval Times

King, Nielsen, Coberley, Pope, and Wells (2012)

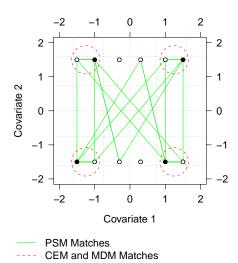


Job Training (Lelonde Data)

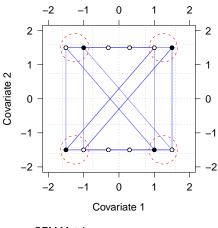
King, Nielsen, Coberley, Pope, and Wells (2012)



PSM Approximates Random Matching in Balanced Data



Destroying CEM with PSM's Two Step Approach



- ---- CEM Matches
 - CEM-generated PSM Matches

• The Matching Frontier

- The Matching Frontier
 - Easy to use; no need to iterate

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - · Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - · Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake

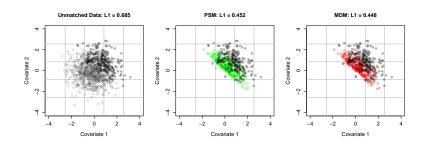
- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - · Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake

- The Matching Frontier
 - Easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - · Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- CEM and Mahalanobis do not have PSM's problems

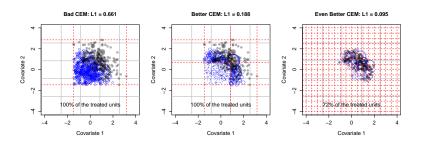
For more information,

GaryKing.org/cem

Data where PSM Works Reasonably Well — PSM & MDM



Data where PSM Works Reasonably Well — CEM



CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Weight:
$$w_i = \frac{m_i^I}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1|X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

CEM Weight:
$$w_i = \frac{m_i^I}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1|X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

→ CEM:

CEM Weight:
$$w_i = \frac{m_i^I}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1|X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

→ CEM:

Gives a better pscore than PSM

CEM Weight:
$$w_i = \frac{m_i^I}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1|X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

→ CEM:

- Gives a better pscore than PSM
- Doesn't match based on crippled information