Matching Methods for Causal Inference

Gary King Institute for Quantitative Social Science Harvard University

Talk at University of Georgia, 3/3/2011

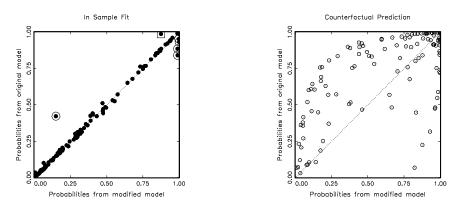
- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is usually best)
- $\bullet \, \rightsquigarrow$ Lots of insights revealed in the process

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

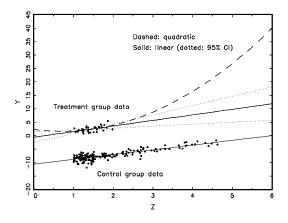
Two Logit Models, Apparently Similar Results

	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4		—	—	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	
Log-likelihood	-45.649			-44.902		
Pseudo R ²		.423			.433	

Doyle and Sambanis: Model Dependence



Model Dependence: A Simpler Example (King and Zeng, 2006: fig.4 *Political Analysis*)

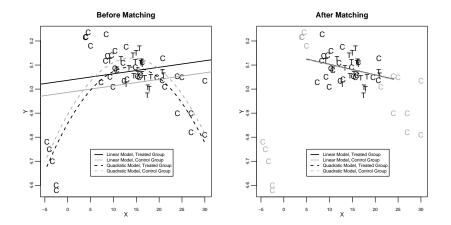


What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

Gary King (Harvard, IQSS)

Matching within the Interpolation Region (Ho, Imai, King, Stuart, 2007: fig.1, *Political Analysis*)



Matching reduces model dependence, bias, and variance

What Matching Does

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \frac{1}{n_T} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

• or Feasible Average Treatment effect on the Treated: FSATT

Preprocess (Matching)

- Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- Stimation Difference in means or a model

Preprocess (Matching)

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- Estimation Difference in means or a model

Preprocess (Matching)

• Temporarily coarsen X as much as you're willing

- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
- Estimation Difference in means or a model
 - · Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)

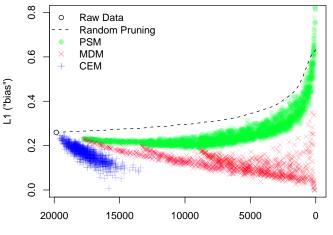
- Bias (& model dependence) = f(imbalance, importance, estimator)
 we measure imbalance instead
- Variance = f(matched sample size, estimator)
 → we measure matched sample size instead
- Bias-Variance trade off ~→ Imbalance-*n* Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)
 - Better measure (difference of multivariate histograms):

$$\mathcal{L}_1(f,g;H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Choose matched solution & matching method becomes irrelevant
- Our idea: Compute lots of matching solutions, identify the frontier of lowest imbalance for each given *n*, and choose a matching solution

A Space Graph: Real Data King, Nielsen, Coberley, Pope, and Wells (2011)

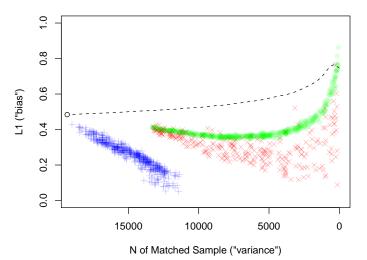
Healthways Data



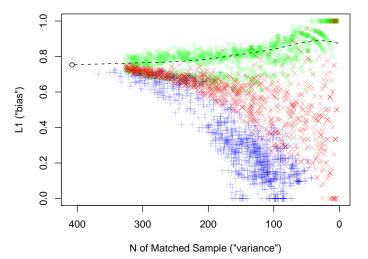
N of Matched Sample ("variance")

A Space Graph: Real Data

Called/Not Called Data

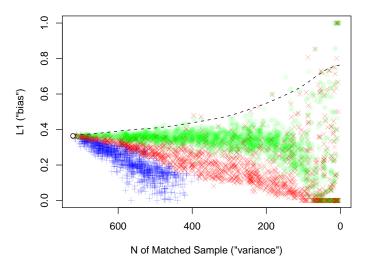


A Space Graph: Real Data

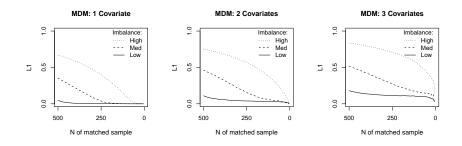


A Space Graph: Real Data

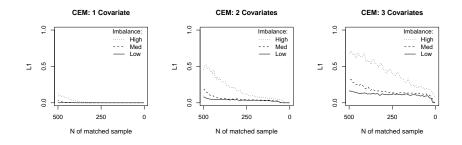
Lalonde Data Subset



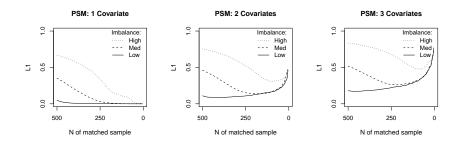
A Space Graph: Simulated Data — Mahalanobis



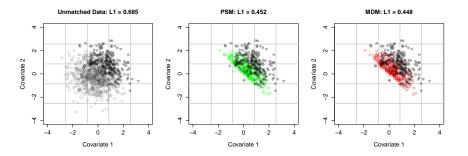
A Space Graph: Simulated Data — CEM



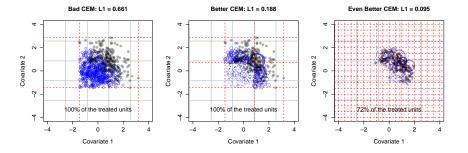
A Space Graph: Simulated Data — Propensity Score



Data where PSM Works Reasonably Well — PSM & MDM



Data where PSM Works Reasonably Well — CEM



CEM Weights and Nonparametric Propensity Score

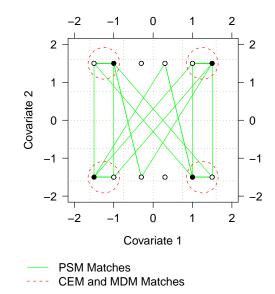
CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (Unnormalized)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 \rightsquigarrow CEM:

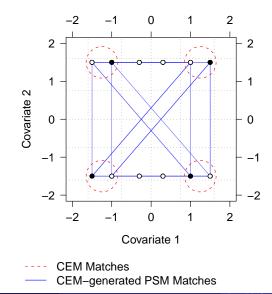
- Gives a better pscore than PSM
- Doesn't match based on crippled information

PSM Approximates Random Matching in Balanced Data



Gary King (Harvard, IQSS)

Destroying CEM with PSM's Two Step Approach



Conclusions

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM is a mistake
 - Adjusting experimental data with PSM is a mistake
 - Reestimating the propensity score after eliminating noncommon support may be a mistake
- In four data sets and many simulations:
 - $\mathsf{CEM} > \mathsf{Mahalanobis} > \mathsf{Propensity} \; \mathsf{Score}$
- (Your performance may vary)
- CEM and Mahalanobis do not have PSM's problems
- You can easily check with the Space Graph

For papers, software (for R and Stata), tutorials, etc.

http://GKing.Harvard.edu/cem