Matching Methods for Causal Inference

Gary King

Institute for Quantitative Social Science Harvard University

(Talk at University of Kentucky, 4/20/2012)

Gary King (Harvard, IQSS)

• Problem: Model dependence (review)

æ

イロト イヨト イヨト イヨト

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)

э

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications

-∢ ∃ ▶

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)

- Problem: Model dependence (review)
- Solution: Matching to preprocess data (review)
- Problem: Many matching methods & specifications
- Solution: The Space Graph helps us choose
- Problem: The most commonly used method can increase imbalance!
- Solution: Other methods do not share this problem
- (Coarsened Exact Matching is simple, easy, and powerful)
- $\bullet \, \rightsquigarrow$ Lots of insights revealed in the process

Model Dependence Example

Gary King (Harvard, IQSS)

2

イロト イヨト イヨト イヨト

Model Dependence Example

Replication: Doyle and Sambanis, APSR 2000

æ

イロト イヨト イヨト イヨト

• Data: 124 Post-World War II civil wars

< A

.

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent variable: peacebuilding success
- Treatment variable: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status; etc.
- Counterfactual question: UN intervention switched for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logit Models, Apparently Similar Results

	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4	—	—	—	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	
Log-likelihood		-45.649			-44.902	
Pseudo R ²		.423			.433	

(日) (周) (三) (三)

Doyle and Sambanis: Model Dependence

э

Model Dependence: A Simpler Example

Gary King (Harvard, IQSS)

æ

イロト イヨト イヨト イヨト

э

イロト イポト イヨト イヨト

What to do?

What to do?

• Preprocess I: Eliminate extrapolation region

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region

What to do?

- Preprocess I: Eliminate extrapolation region
- Preprocess II: Match (prune bad matches) within interpolation region
- Model remaining imbalance

Gary King (Harvard, IQSS)

Matching Methods

Gary King (Harvard, IQSS)

Matching reduces model dependence, bias, and variance

3 K K 3 K
Gary King (Harvard, IQSS)

2

イロト イヨト イヨト イヨト

• Notation:

Gary King (Harvard, IQSS)

2

イロト イヨト イヨト イヨト

- Notation:
 - Y_i Dependent variable

æ

イロト イヨト イヨト イヨト

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)

- < A

B ▶ < B ▶

э

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates

Image: Image:

э

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

-∢∃>

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$\mathsf{TE}_i = Y_i(T_i = 1) - \frac{Y_i(T_i = 0)}{2}$$

-∢∃>

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

イロト イポト イヨト イヨト

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$

- < 🗇 > < E > < E >

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \frac{1}{n_{\mathcal{T}}} \sum_{i \in \{\mathcal{T}_i = 1\}} \mathsf{TE}_i$$

・ロト ・ 同ト ・ ヨト ・ ヨト -

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Treatment Effect for treated $(T_i = 1)$ observation *i*:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(0) = Y_j(0)$ or a model $\hat{Y}_i(0) = \hat{g}_0(X_j)$
- Prune unmatched units to improve balance (so X is unimportant)
- Qol: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \frac{1}{n_T} \sum_{i \in \{T_i = 1\}} \mathsf{TE}_i$$

• or Feasible Average Treatment effect on the Treated: FSATT

Method 1: Mahalanobis Distance Matching

2

3 K K 3 K

Estimation Difference in means or a model

▶ ∢ ∃ ▶

• Distance
$$(X_i, X_j) = \sqrt{(X_i - X_j)' S^{-1}(X_i - X_j)}$$

Estimation Difference in means or a model

▶ ∢ ∃ ▶

- Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
- Match each treated unit to the nearest control unit

Stimation Difference in means or a model

- Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Stimation Difference in means or a model

- Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1} (X_i X_j)}$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- Stimation Difference in means or a model

18 / 57

Method 2: Propensity Score Matching

æ

イロト イ団ト イヨト イヨト

2 Estimation Difference in means or a model

- ∢ ∃ ▶

• Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$

2 Estimation Difference in means or a model

3 1 4 3 1

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$

Stimation Difference in means or a model

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit

2 Estimation Difference in means or a model

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- 2 Estimation Difference in means or a model

- Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$
- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- Estimation Difference in means or a model

2

33 / 57

2

Method 3: Coarsened Exact Matching

æ

æ

- < E ► < E ►

Estimation Difference in means or a model

∃ ▶ ∢ ∃ ▶

• Temporarily coarsen X as much as you're willing

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

- Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- Stimation Difference in means or a model

• Temporarily coarsen X as much as you're willing

- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
- Estimation Difference in means or a model

• Temporarily coarsen X as much as you're willing

- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
- Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds

• Temporarily coarsen X as much as you're willing

- e.g., Education (grade school, high school, college, graduate)
- Easy to understand, or can be automated as for a histogram
- Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- Pass on original (uncoarsened) units except those pruned
- Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)

2

イロト イヨト イヨト イヨト

Gary King (Harvard, IQSS)

Education •

36 / 57

< 🗇 🕨

∃ ⊳ æ

Gary King (Harvard, IQSS)

æ

- < E ► < E ►

< A

Bias (& model dependence) = f(imbalance, importance, estimator)
 → we measure imbalance instead

▶ ∢ ∃ ▶

The Bias-Variance Trade Off in Matching

- Bias (& model dependence) = f(imbalance, importance, estimator)
 → we measure imbalance instead
- Variance = f(matched sample size, estimator)
 - \rightsquigarrow we measure matched sample size instead

The Bias-Variance Trade Off in Matching

- Bias (& model dependence) = f(imbalance, importance, estimator)
 we measure imbalance instead
- Variance = f(matched sample size, estimator)
 → we measure matched sample size instead
- Bias-Variance trade off ~→ Imbalance-*n* Trade Off

- Bias (& model dependence) = f(imbalance, importance, estimator)
 we measure imbalance instead
- Variance = f(matched sample size, estimator)
 → we measure matched sample size instead
- Bias-Variance trade off ~→ Imbalance-*n* Trade Off
- Measuring Imbalance

- Bias (& model dependence) = f(imbalance, importance, estimator)
 we measure imbalance instead
- Variance = f(matched sample size, estimator)
 → we measure matched sample size instead
- Bias-Variance trade off \rightsquigarrow Imbalance-*n* Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)

- Bias (& model dependence) = f(imbalance, importance, estimator)
 we measure imbalance instead
- Variance = f(matched sample size, estimator)
 → we measure matched sample size instead
- Bias-Variance trade off ~→ Imbalance-*n* Trade Off
- Measuring Imbalance
 - Classic measure: Difference of means (for each variable)
 - Better measure (difference of multivariate histograms):

$$\mathcal{L}_1(f, g; H) = rac{1}{2} \sum_{\ell_1 \cdots \ell_k \in H(\mathbf{X})} |f_{\ell_1 \cdots \ell_k} - g_{\ell_1 \cdots \ell_k}|$$

Comparing Matching Methods

Gary King (Harvard, IQSS)

æ

イロト イヨト イヨト イヨト

• MDM & PSM: Choose matched n, match, check imbalance

B ▶ < B ▶

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate

- MDM & PSM: Choose matched *n*, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Choose matched solution & matching method becomes irrelevant

- MDM & PSM: Choose matched n, match, check imbalance
- CEM: Choose imbalance, match, check matched n
- Best practice: iterate
- Choose matched solution & matching method becomes irrelevant
- Our idea: Compute lots of matching solutions, identify the frontier of lowest imbalance for each given *n*, and choose a matching solution

A Space Graph: Real Data King, Nielsen, Coberley, Pope, and Wells (2011)

Healthways Data

Gary King (Harvard, IQSS)

Matching Methods
A Space Graph: Real Data

Called/Not Called Data

Gary King (Harvard, IQSS)

Matching Methods

45 / 57

A Space Graph: Real Data

Lalonde Data Subset

Gary King (Harvard, IQSS)

46 / 57

Space Graphs: Different Imbalance Metrics

Gary King (Harvard, IQSS)

Matching Methods

E + 4 E +

A Space Graph: Simulated Data — Mahalanobis

48 / 57

표 문 문

A Space Graph: Simulated Data — CEM

2

э.

A Space Graph: Simulated Data — Propensity Score

50 / 57

э

э.

PSM Approximates Random Matching in Balanced Data

Gary King (Harvard, IQSS)

Matching Methods

51 / 57

CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

- 4 @ > - 4 @ > - 4 @ >

CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

52 / 57

- 4 @ > - 4 @ > - 4 @ >

CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow CEM$:

æ

(日) (周) (三) (三)

CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow CEM$:

• Gives a better pscore than PSM

▶ ∢ ∃ ▶

CEM Weight:
$$w_i = \frac{m_i^T}{m_i^C}$$
 (+ normalization)

CEM Pscore:
$$\widehat{\Pr}(T_i = 1 | X_i) = \frac{m_i^T}{m_i^T + m_i^C}$$

 $\rightsquigarrow CEM$:

- Gives a better pscore than PSM
- Doesn't match based on crippled information

Destroying CEM with PSM's Two Step Approach

Gary King (Harvard, IQSS)

Matching Methods

53 / 57

Data where PSM Works Reasonably Well — PSM & MDM

Image: Image:

-∢ ∃ ▶

Data where PSM Works Reasonably Well — CEM

э

(日) (同) (三) (三)

Gary King (Harvard, IQSS)

3

メロト メポト メヨト メヨト

• Propensity score matching:

æ

イロト イヨト イヨト イヨト

- Propensity score matching:
 - The problem:

æ

イロト イヨト イヨト イヨト

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data

Image: Image:

æ

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches

э

ヨト イヨト

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)

-∢∃>

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:

-∢ ∃ ▶

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake

-∢∃>

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- In four data sets and many simulations:

 $\mathsf{CEM} > \mathsf{Mahalanobis} > \mathsf{Propensity} \ \mathsf{Score}$

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- In four data sets and many simulations:

 $\mathsf{CEM} > \mathsf{Mahalanobis} > \mathsf{Propensity} \; \mathsf{Score}$

• (Your performance may vary)

- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - The Cause: unnecessary 1st stage dimension reduction
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- In four data sets and many simulations:

 $\mathsf{CEM} > \mathsf{Mahalanobis} > \mathsf{Propensity} \; \mathsf{Score}$

- (Your performance may vary)
- CEM and Mahalanobis do not have PSM's problems

ヨト イヨト

• Propensity score matching:

- The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
- The Cause: unnecessary 1st stage dimension reduction
- Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- In four data sets and many simulations:

 $\mathsf{CEM} > \mathsf{Mahalanobis} > \mathsf{Propensity} \; \mathsf{Score}$

- (Your performance may vary)
- CEM and Mahalanobis do not have PSM's problems
- You can easily check with the Space Graph

For papers, software (for R, Stata, & SPSS), tutorials, etc.

http://GKing.Harvard.edu/cem

Gary King (Harvard, IQSS)

Matching Methods

