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Problem: Matching prunes n to improve imbalance, but

e Some: set n and don't guarantee imbalance

e Others: set imbalance and don’t guarantee n

e Plus: Matching methods optimize a different “imbalance” than
recommended post-hoc checks

Solution: easier & more powerful
o Estimate the (n-imbalance) "matching frontier”
e |Imbalance metric choice defines the frontier
Side point:
e Problem: Propensity score matching increases imbalance!
e Solution: Not an issue with other methods or our approach
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Model Dependence Example

Replication of Doyle and Sambanis, APSR 2000
(From: King and Zeng, 2007)

Data: 124 Post-World War Il civil wars
Dependent var: peacebuilding success
Treatment: multilateral UN peacekeeping intervention (0/1)

Control vars: war type, severity, duration; development
status,. ..

Counterfactual question: Switch UN intervention for each war
Data analysis: Logit model

The question: How model dependent are the results?



Two Logit Models, Apparently Similar Results
Modified Model

Original “Interactive” Model

Variables Coeff SE P-val Coeff SE P-val
Wartype —1.742 .609 .004 —1.666 .606 .006
Logdead —.445 .126 .000 —.437 .125 .000
Wardur .006 .006 .258 .006 .006 .342
Factnum —1.259 .703 .073 —1.045 .899 .245
Factnum? .062 .065 .346 .032 .104 .756
Trnsfcap .004 .002 .010 .004 .002 .017
Develop .001 .000 .065 .001 .000 .068
Exp —6.016 3.071 .050 —6.215 3.065 .043
Decade —.299 .169 .077 —0.284 .169 .093
Treaty 2.124 .821 .010 2.126 .802 .008
UNOP4 3.135 1.091 .004 262 1.392 .851
Wardur*UNOP4 — — — .037 .011 .001
Constant 8.609 2.157 0.000 7.978 2.350 .000
N 122 122
Log-likelihood -45.649 -44.902

Pseudo R? 423 433
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Matching within the Interpolation Region
(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance
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1. Preprocess (Matching)
e Distance(X;, X;) = /(Xi — X;)’'S~1(X; — X;)
e Match each treated unit to the nearest control unit
[ ]
[ ]

Control units: not reused; pruned if unused
Prune matches if Distance>caliper
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e To use, make 3 choices:
1. Imbalance metric, e.g.:
e Average Mahalanobis Distance (average distance from each
unit to the closest in the other treatment regime)
e Difference of multivariate histograms (L1):
2. Quantity of interest: SATT (prune Cs only) or FSATT
3. Fixed- or variable-ratio matching

e Result:

Simple to use

All solutions are optimal

No iteration or diagnostics required
No cherry picking possible
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185 Ts; pruning most 16,252 Cs won't increase variance much

Huge bias-variance trade-off after most are pruned

Estimates converge to experiment after removing bias

No mysteries: basis of inference clearly revealed
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Case T Y Effect change N remaining
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Cote D’lvoire, 2002 1 1 0.011—0.008 995
Guinea, 2000 1 1 0.006—0 739

38 /55



Aids Shocks: Large Unit-Level Effects

Case T Y Effect change N remaining
Gambia, 1991 1 0 0.008—0.015 1608
Niger, 1994 0 1 0.015—0.023 1595
Lesotho, 1998 1 1 0.021—0.018 1254
Cote D’lvoire, 2002 1 1 0.011—0.008 995
Guinea, 2000 1 1 0.006—0 739

e High leverage points

38 /55



Aids Shocks: Large Unit-Level Effects

Case T Y Effect change N remaining
Gambia, 1991 1 0 0.008—0.015 1608
Niger, 1994 0 1 0.015—0.023 1595
Lesotho, 1998 1 1 0.021—0.018 1254
Cote D’lvoire, 2002 1 1 0.011—0.008 995
Guinea, 2000 1 1 0.006—0 739

e High leverage points

e Cases with few substitutes

38 /55



Aids Shocks: Large Unit-Level Effects

Case T Y Effect change N remaining
Gambia, 1991 1 0 0.008—0.015 1608
Niger, 1994 0 1 0.015—0.023 1595
Lesotho, 1998 1 1 0.021—0.018 1254
Cote D’lvoire, 2002 1 1 0.011—0.008 995
Guinea, 2000 1 1 0.006—0 739

e High leverage points
e Cases with few substitutes

¢ Not model dependence (which matching helps with), but data
dependence
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Constructing the FSATT Mahalanobis Frontier
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e Very fast; works with any continuous imbalance metric oo
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Constructing the L1/L2 SATT Frontier

e Warning: This figure omits some technical details too!
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Constructing the L1/L2 SATT Frontier

e Warning: This figure omits some technical details too!

e Works very fast, even with very large data sets
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Problems with PSM: Foreign Aid Shocks

King, Nielsen, Coberley, Pope, and Wells (2012)
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Problems with PSM: Healthways Data

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric
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PSM Approximates Random Matching in Balanced Data
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e 1/4 caliper on propensity score: mistake

e Software on its way -
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