Simplifying Causal Inference¹

Gary King²

Institute for Quantitative Social Science Harvard University

(Talk at the University of South Carolina, 2/28/2014)

¹Joint work with Christopher Lucas and Richard Nielsen

²GaryKing.org.

• Problem: Model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes n to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes n to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful
 - Estimate the (n-imbalance) "matching frontier"

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful
 - Estimate the (n-imbalance) "matching frontier"
 - Imbalance metric choice defines the frontier

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful
 - Estimate the (n-imbalance) "matching frontier"
 - Imbalance metric choice defines the frontier
- Side point:

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes *n* to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful
 - Estimate the (n-imbalance) "matching frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: Propensity score matching increases imbalance!

- Problem: Model dependence (review)
- Solution: Matching to reduce model dependence (review)
- Problem: Matching prunes n to improve imbalance, but
 - Some: set *n* and don't guarantee imbalance
 - Others: set imbalance and don't guarantee n
 - Plus: Matching methods optimize a different "imbalance" than recommended post-hoc checks
- Solution: easier & more powerful
 - Estimate the (n-imbalance) "matching frontier"
 - Imbalance metric choice defines the frontier
- Side point:
 - Problem: Propensity score matching increases imbalance!
 - Solution: Not an issue with other methods or our approach

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

• Data: 124 Post-World War II civil wars

Replication of Doyle and Sambanis, APSR 2000 (From: King and Zeng, 2007)

Data: 124 Post-World War II civil wars

Dependent var: peacebuilding success

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status....
- Counterfactual question: Switch UN intervention for each war

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model

- Data: 124 Post-World War II civil wars
- Dependent var: peacebuilding success
- Treatment: multilateral UN peacekeeping intervention (0/1)
- Control vars: war type, severity, duration; development status,...
- Counterfactual question: Switch UN intervention for each war
- Data analysis: Logit model
- The question: How model dependent are the results?

Two Logit Models, Apparently Similar Results

8	Original "Interactive" Model			Modified Model		
Variables	Coeff	SE	P-val	Coeff	SE	P-val
Wartype	-1.742	.609	.004	-1.666	.606	.006
Logdead	445	.126	.000	437	.125	.000
Wardur	.006	.006	.258	.006	.006	.342
Factnum	-1.259	.703	.073	-1.045	.899	.245
Factnum2	.062	.065	.346	.032	.104	.756
Trnsfcap	.004	.002	.010	.004	.002	.017
Develop	.001	.000	.065	.001	.000	.068
Exp	-6.016	3.071	.050	-6.215	3.065	.043
Decade	299	.169	.077	-0.284	.169	.093
Treaty	2.124	.821	.010	2.126	.802	.008
UNOP4	3.135	1.091	.004	.262	1.392	.851
Wardur*UNOP4			_	.037	.011	.001
Constant	8.609	2.157	0.000	7.978	2.350	.000
N		122			122	
المصائلية المصا		4E 640			44.000	

Log-likelihood -45.649 -44.902 Pseudo R^2 .423 .433

Doyle and Sambanis: Model Dependence

(Ho, Imai, King, Stuart, 2007: fig.1, Political Analysis)

Matching reduces model dependence, bias, and variance

• Notation:

Notation:

Y_i Dependent variable

Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

Notation:

 Y_i Dependent variable

 T_i Treatment variable (0/1, or more general)

 X_i Pre-treatment covariates

Estimation

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$\mathsf{TE}_i = Y_i(T_i = 1) - \underline{Y_i(T_i = 0)}$$

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

• Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_j(T_i = 0)$ (or a model)

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Quantities of Interest:

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i = 1\}} \left(\mathsf{TE}_i\right)$$

- Notation:
 - Y_i Dependent variable
 - T_i Treatment variable (0/1, or more general)
 - X_i Pre-treatment covariates
- Estimation
 - Treatment Effect for treated $(T_i = 1)$ observation i:

$$TE_i = Y_i(T_i = 1) - Y_i(T_i = 0)$$

= observed -unobserved

- Estimate $Y_i(T_i = 0)$ with Y_j from matched $(X_i \approx X_j)$ controls $\hat{Y}_i(T_i = 0) = Y_i(T_i = 0)$ (or a model)
- Prune unmatched units to improve balance (so X is unimportant)
- Quantities of Interest:
 - 1. SATT: Sample Average Treatment effect on the Treated:

$$\mathsf{SATT} = \mathsf{mean}_{i \in \{T_i = 1\}} \left(\mathsf{TE}_i \right)$$

2. FSATT: Feasible Average Treatment effect on the Treated

1. Preprocess (Matching)

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)' S^{-1}(X_i X_j)}$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Distance $(X_i, X_j) = \sqrt{(X_i X_j)'S^{-1}(X_i X_j)}$
 - Match each treated unit to the nearest control unit
 - · Control units: not reused; pruned if unused
 - Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

1. Preprocess (Matching)

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1+e^{-X_i\beta}}$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

• Distance $(X_i, X_j) = |\pi_i - \pi_j|$

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar
 - $\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$
 - Distance $(X_i, X_j) = |\pi_i \pi_j|$
 - Match each treated unit to the nearest control unit

- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- · Match each treated unit to the nearest control unit
- · Control units: not reused; pruned if unused
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- · Match each treated unit to the nearest control unit
- Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Reduce k elements of X to scalar

$$\pi_i \equiv \Pr(T_i = 1|X) = \frac{1}{1 + e^{-X_i\beta}}$$

- Distance $(X_i, X_j) = |\pi_i \pi_j|$
- Match each treated unit to the nearest control unit
- · Control units: not reused; pruned if unused
- Prune matches if Distance>caliper
- 2. Estimation Difference in means or a model
- 3. Checking Measure imbalance, tweak, repeat, ...

Propensity

Score

Score

Education (years)

Score 22/55

Education (vears)

Propensity
Score 23/55

1. Preprocess (Matching)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)

2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
- 3. Checking Determine matched sample size, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...

- 1. Preprocess (Matching)
 - Temporarily coarsen X as much as you're willing
 - e.g., Education (grade school, high school, college, graduate)
 - Easy to understand, or can be automated as for a histogram
 - Apply exact matching to the coarsened X, C(X)
 - Sort observations into strata, each with unique values of C(X)
 - Prune any stratum with 0 treated or 0 control units
 - Pass on original (uncoarsened) units except those pruned
- 2. Estimation Difference in means or a model
 - Need to weight controls in each stratum to equal treateds
 - Can apply other matching methods within CEM strata (inherit CEM's properties)
- 3. Checking Determine matched sample size, tweak, repeat, ...
 - Easier, but still iterative

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L_1) :

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal

- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal
 - · No iteration or diagnostics required

- Bias-Variance trade off → Imbalance-n Trade Off
 Frontier = matched dataset with lowest imbalance for each n
- To use, make 3 choices:
 - 1. Imbalance metric, e.g.:
 - Average Mahalanobis Distance (average distance from each unit to the closest in the other treatment regime)
 - Difference of multivariate histograms (L₁):
 - 2. Quantity of interest: SATT (prune Cs only) or FSATT
 - 3. Fixed- or variable-ratio matching
- Result:
 - Simple to use
 - All solutions are optimal
 - · No iteration or diagnostics required
 - No cherry picking possible

• Consider 1 point on the SATT frontier:

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!
- We develop new algorithms for several frontiers which:

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!
- We develop new algorithms for several frontiers which:
 - run very fast

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!
- We develop new algorithms for several frontiers which:
 - run very fast
 - do not require evaluating every subset

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for all $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!
- We develop new algorithms for several frontiers which:
 - run very fast
 - do not require evaluating every subset
 - · work with very large data sets

- Consider 1 point on the SATT frontier:
 - Start with $(N \times k)$ control matrix X_0
 - Calculate imbalance for <u>all</u> $\binom{N}{n}$ subsets of rows of X_0
 - Choose the (or a) subset with the lowest imbalance
- Evaluations needed to compute the entire frontier:
 - $\binom{N}{n}$ evaluations for each sample size $n = N, N 1, \dots, 1$
 - The combination is the (gargantuan) "power set"
 - e.g., N > 300 requires more imbalance evaluations than elementary particles in the universe!
 - → It's hard to calculate!
- We develop new algorithms for several frontiers which:
 - run very fast
 - do not require evaluating every subset
 - · work with very large data sets
 - → It's easy to calculate!

• 185 Ts; pruning most 16,252 Cs won't increase variance much

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after most are pruned

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after most are pruned
- Estimates converge to experiment after removing bias

- 185 Ts; pruning most 16,252 Cs won't increase variance much
- Huge bias-variance trade-off after most are pruned
- Estimates converge to experiment after removing bias
- No mysteries: basis of inference clearly revealed

• Frontier is nearly linear (left)

- Frontier is nearly linear (left)
- Causal effects have big jumps (right)

- Frontier is nearly linear (left)
- Causal effects have big jumps (right)
- More difficult inferential task

Aids Shocks: Change in Quantity of Interest

Aids Shocks: Change in Quantity of Interest

Case	T	Y	Effect change	N remaining
Gambia, 1991	1	0	$0.008 { ightarrow} 0.015$	1608
Niger, 1994	0	1	$0.015 { ightarrow} 0.023$	1595
Lesotho, 1998	1	1	$0.021 { ightarrow} 0.018$	1254
Cote D'Ivoire, 2002	1	1	$0.011 { o} 0.008$	995
Guinea, 2000	1	1	$0.005 \rightarrow 0$	739

Case	T	Y	Effect change	N remaining
Gambia, 1991	1	0	$0.008 { ightarrow} 0.015$	1608
Niger, 1994	0	1	$0.015 { ightarrow} 0.023$	1595
Lesotho, 1998	1	1	$0.021 { ightarrow} 0.018$	1254
Cote D'Ivoire, 2002	1	1	$0.011 { o} 0.008$	995
Guinea, 2000	1	1	$0.005 \rightarrow 0$	739

• High leverage points

Case	T	Y	Effect change	N remaining
Gambia, 1991	1	0	$0.008 { ightarrow} 0.015$	1608
Niger, 1994	0	1	$0.015 { o} 0.023$	1595
Lesotho, 1998	1	1	$0.021 { ightarrow} 0.018$	1254
Cote D'Ivoire, 2002	1	1	$0.011 { o} 0.008$	995
Guinea, 2000	1	1	$0.005 \rightarrow 0$	739

- High leverage points
- Cases with few substitutes

Case	T	Y	Effect change	N remaining
Gambia, 1991	1	0	$0.008 { ightarrow} 0.015$	1608
Niger, 1994	0	1	$0.015 { ightarrow} 0.023$	1595
Lesotho, 1998	1	1	$0.021 { ightarrow} 0.018$	1254
Cote D'Ivoire, 2002	1	1	$0.011 { o} 0.008$	995
Guinea, 2000	1	1	$0.005 \rightarrow 0$	739

- High leverage points
- Cases with few substitutes
- Not model dependence (which matching helps with), but data dependence

Warning: figure omits some details!

- Warning: figure omits some details!
- Very fast; works with any continuous imbalance metric

• Warning: This figure omits some technical details too!

- Warning: This figure omits some technical details too!
- Works very fast, even with very large data sets

Problems with PSM: Foreign Aid Shocks

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Methods-specific frontiers (for methodological research only)

Problems with PSM: Healthways Data

King, Nielsen, Coberley, Pope, and Wells (2012)

Imbalance Metric

Methods-specific frontiers (for methodological research only)

PSM Approximates Random Matching in Balanced Data

Conclusions

• The Matching Frontier

- The Matching Frontier
 - Fast; easy to use; no need to iterate

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake

- The Matching Frontier
 - Fast; easy to use; no need to iterate
 - No need to choose among matching methods
 - Optimal results for your choice of imbalance metric
- Propensity score matching:
 - The problem:
 - Imbalance can be worse than original data
 - Can increase imbalance when removing the worst matches
 - Approximates random matching in well-balanced data (Random matching increases imbalance)
 - Implications:
 - Balance checking required
 - Adjusting for potentially irrelevant covariates with PSM: mistake
 - Adjusting experimental data with PSM: mistake
 - Reestimating the propensity score after eliminating noncommon support: mistake
 - 1/4 caliper on propensity score: mistake
- Software on its way · · ·

For more information

GaryKing.org