Demographic Forecasting

Gary King
Institute for Quantitative Social Science Harvard University

joint work with
Federico Girosi, with contributions from Kevin Quinn and Greg Wawro
(talk at Graduate Methods and Models Seminar, IQSS, Harvard University, 12/5/08)

What this Talk is About

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method
- A better farcasting method

What this Talk is About

- Mortality forecasts, which are studied in:
- demography \& sociology
- public health \& biostatistics
- economics \& social security and retirement planning
- actuarial science \& insurance companies
- medical research \& pharmaceutical companies
- political science \& public policy
- A better forecasting method
- A better farcasting method
- Other results we needed to achieve this original goal

Other Results (Needed to Develop Improved Forecasts)

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together
- Allows different covariates in each regression

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together
- Allows different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together
- Allows different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information
- Better Bayesian priors

Other Results (Needed to Develop Improved Forecasts)

A New Class of Statistical Models

- Output: same as linear regression
- Estimates a set of linear regressions together
- Allows different covariates in each regression
- We demonstrate that most hierarchical and spatial Bayesian models with covariates misrepresent prior information
- Better Bayesian priors
- forecasts and farcasts based on much more information

Resolving Disputes:

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries - risking omitted variable bias

Resolving Disputes:

VS.

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries - risking omitted variable bias
(3) Exclude countries when some variables are not available

Resolving Disputes:

VS.

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries - risking omitted variable bias
(3) Exclude countries when some variables are not available — risking selection bias

Resolving Disputes:

VS.

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries - risking omitted variable bias
(3) Exclude countries when some variables are not available — risking selection bias
- Our methods:

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries
- risking omitted variable bias
(3) Exclude countries when some variables are not available - risking selection bias
- Our methods:
- Allows different covariates in each regression

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries
- risking omitted variable bias
(3) Exclude countries when some variables are not available - risking selection bias
- Our methods:
- Allows different covariates in each regression
- All are still estimated together

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country - risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries
- risking omitted variable bias
(3) Exclude countries when some variables are not available - risking selection bias
- Our methods:
- Allows different covariates in each regression
- All are still estimated together
- Can thereby forecast with much more local, contextual information

Resolving Disputes:

- When a variable is not available in all countries, comparativists must choose:
(1) Run separate regressions in each country
- risking large inefficiencies (huge standard errors)
(2) Omit variables not observed for all countries
- risking omitted variable bias
(3) Exclude countries when some variables are not available - risking selection bias
- Our methods:
- Allows different covariates in each regression
- All are still estimated together
- Can thereby forecast with much more local, contextual information
- Resolves analogous issues in predicting mortality by age, sex, and cause

The Statistical Problem of Global Mortality Forecasting

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short.

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations;

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations;

The Statistical Problem of Global Mortality Forecasting

- 779,799,281 deaths, in annual mortality rates
- Multidimensional Data Structures: 24 causes of death, 17 age groups, 2 sexes, 191 countries, all for 50 annual observations.
- One time series analysis for each of 155,856 cross-sections: with 1 minute to analyze each, one run takes 108 days
- Every decision must be automated, systematized, and formalized: the same goal as including qualitative information in the model
- Explanatory variables:
- Available in many countries: tobacco consumption, GDP, human capital, trends, fat consumption, total fertility rates, etc.
- Numerous variables specific to a cause, age group, sex, and country
- Most time series are very short. A majority of countries have only a few isolated annual observations; only 54 countries have at least 20 observations; Africa, AIDS, \& Malaria are real problems

How (Some) Existing Mortality Forecasts Work

How (Some) Existing Mortality Forecasts Work

Procedures:

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)
- Method is invulnerable to being proven wrong

How (Some) Existing Mortality Forecasts Work

Procedures:

- Develop private forecasts qualitatively (i.e., informally)
- Adopt a 'toy' statistical model
- Get data; produce tentative forecasts with the model
- Adjust model until forecasts fit private views
- Present forecasts, with statistical model as your "method"

Meaning of procedures

- Forecasts use qualitative information (good!)
- Statistical models add little (bad!)
- Method is invulnerable to being proven wrong
- We bring statistics to demography

Existing Method 1: Parameterize the Age Profile

All Causes (m)

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters
- forecast only these 2 parameters

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters
- forecast only these 2 parameters
- Reduces variance, constrains forecasts

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters
- forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed

Existing Method 1: Parameterize the Age Profile

All Causes (m)

- Gompertz (1825): log-mortality is linear in age after age 20
- reduces 17 age-specific mortality rates to 2 parameters
- forecast only these 2 parameters
- Reduces variance, constrains forecasts
- Dozens of more general functional forms proposed
- But does it fit anything else?

Mortality Age Profile: The Same Pattern?

Cardiovascular Disease (m)

Mortality Age Profile: The Same Pattern?

Breast Cancer (f)

Mortality Age Profile: The Same Pattern?

Other Infectious Diseases (f)

Mortality Age Profile: The Same Pattern?

Suicide (m)

Parameterizing Age Profiles Does Not Work

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages
- We don't know much about levels or exact shapes

Parameterizing Age Profiles Does Not Work

- No mathematical form fits all or even most age profiles
- Out-of-sample age profiles often unrealistic
- The key empirical patterns are qualitative:
- Adjacent age groups have similar mortality rates
- Age profiles are more variable for younger ages
- We don't know much about levels or exact shapes
- Ignores covariate information

Existing Method 2: Deterministic Projections

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth

Existing Method 2: Deterministic Projections

- Random walk with drift; Lee-Carter; least squares on linear trend
- Pros: simple, fast, works well in appropriate data
- Cons: omits covariates; forecasts fan out; age profile becomes less smooth
- Does it fit elsewhere?

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

The same pattern?

Random Walk with Drift \approx Lee-Carter \approx Least Squares

Deterministic Projections Do Not Work

- Linearity does not fit most time series data

Deterministic Projections Do Not Work

- Linearity does not fit most time series data
- Out-of-sample age profiles become unrealistic over time

Regression Approaches (Murray and Lopez, 1996)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Small variance (due to large n)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),
- considerable information lost (due to no pooling over ages)

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),
- considerable information lost (due to no pooling over ages)
- same covariates required in all cross-sections

Regression Approaches (Murray and Lopez, 1996)

- Model mortality over countries (c) and ages (a) as:

$$
m_{c a t}=\mathbf{Z}_{c a, t-\ell} \boldsymbol{\beta}_{c a}+\epsilon_{c a t}, \quad t=1, \ldots, T
$$

- $\mathbf{Z}_{c a, t-\ell}$: covariates lagged ℓ years.
- $\boldsymbol{\beta}_{c a}$: coefficients to be estimated
- Equation by equation estimation: huge variances
- Pool over countries: $\boldsymbol{\beta}_{c a} \Rightarrow \boldsymbol{\beta}_{a}$
- Small variance (due to large n)
- large biases (due to restrictive pooling over countries),
- considerable information lost (due to no pooling over ages)
- same covariates required in all cross-sections
- (It always seems ok to pool over variables outside your own field.)

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

- The hard part: specifying the prior for $\boldsymbol{\beta}$ and, as always, \mathbf{Z}

Partial Pooling via a Bayesian Hierarchical Approach

- Likelihood for equation-by-equation least squares:

$$
\mathcal{P}\left(m \mid \boldsymbol{\beta}_{i}, \sigma_{i}\right)=\prod_{t} \mathcal{N}\left(m_{i t} \mid \mathbf{Z}_{i t} \boldsymbol{\beta}_{i}, \sigma_{i}^{2}\right)
$$

- Add priors and form a posterior

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) & \propto \mathcal{P}(m \mid \boldsymbol{\beta}, \sigma) \times \mathcal{P}(\boldsymbol{\beta} \mid \theta) \times \mathcal{P}(\theta) \mathcal{P}(\sigma) \\
& =(\text { Likelihood }) \times(\text { Key Prior }) \times(\text { Other priors })
\end{aligned}
$$

- Calculate point estimate for $\boldsymbol{\beta}$ (for \hat{y}) as the mean posterior:

$$
\boldsymbol{\beta}^{\text {Bayes }} \equiv \int \boldsymbol{\beta} \mathcal{P}(\boldsymbol{\beta}, \sigma, \theta \mid m) d \boldsymbol{\beta} d \theta d \sigma
$$

- The hard part: specifying the prior for $\boldsymbol{\beta}$ and, as always, \mathbf{Z}
- The easy part: easy-to-use software to implement everything we discuss today.

The (Problematic) Classical Bayesian Approach

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}^{\prime}$ s).

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}$'s).
Requirements: Comparing $\boldsymbol{\beta}_{\boldsymbol{i}}$ and $\boldsymbol{\beta}_{\boldsymbol{j}}$

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}$'s).
Requirements: Comparing $\boldsymbol{\beta}_{\boldsymbol{i}}$ and $\boldsymbol{\beta}_{\boldsymbol{j}}$

- Similarity: $s_{i j}$

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}$'s).
Requirements: Comparing $\boldsymbol{\beta}_{\boldsymbol{i}}$ and $\boldsymbol{\beta}_{\boldsymbol{j}}$

- Similarity: $s_{i j}$
- Distance: $\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right)^{\prime} \Phi\left(\boldsymbol{\beta}_{\boldsymbol{i}}-\boldsymbol{\beta}_{j}\right) \equiv\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}$

The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among coefficients ($\boldsymbol{\beta}$'s).
Requirements: Comparing $\boldsymbol{\beta}_{i}$ and $\boldsymbol{\beta}_{j}$

- Similarity: $s_{i j}$
- Distance: $\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right)^{\prime} \Phi\left(\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right) \equiv\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}$

Natural choice for the prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \Phi) \propto \exp \left(-\frac{1}{2} \sum_{i j} s_{i j}\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}_{j}\right\|_{\Phi}^{2}\right)
$$

The (Problematic) Classical Bayesian Approach

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{i}$ more smooth may make μ less smooth $(\mu=\mathbf{Z} \boldsymbol{\beta})$:

The (Problematic) Classical Bayesian Approach

- Requires the same covariates, with the same meaning, in every cross-section.
- Prior knowledge about $\boldsymbol{\beta}$ exists for causal effects, not for control variables, or forecasting
- Everything depends on Φ, the normalization factor:
- Φ can't be estimated, and must be set.
- An uninformative prior for it would make Bayes irrelevant,
- An informative prior can't be used since we don't have information
- Common practice: make some wild guesses.
- The classical approach can be harmful: Making $\boldsymbol{\beta}_{\boldsymbol{i}}$ more smooth may make μ less smooth ($\mu=\mathbf{Z} \boldsymbol{\beta}$):
- Extensive trial-and-error runs: no useful parameter values.

Our Alternative Strategy: Priors on μ

Three steps:

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{a t}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?
(2) Constrain the prior on μ to the subspace spanned by the covariates: $\mu=\mathbf{Z} \boldsymbol{\beta}$

Our Alternative Strategy: Priors on μ

Three steps:

(1) Specify a prior for μ :

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right) \text {, e.g., } H[\mu, \theta] \equiv \frac{\theta}{T} \sum_{t=1}^{T} \sum_{a=1}^{A-1}\left(\mu_{\mathrm{at}}-\mu_{a+1, t}\right)^{2}
$$

- To do Bayes, we need a prior on $\boldsymbol{\beta}$
- Problem: How to translate a prior on μ into a prior on β (a few-to-many transformation)?
(2) Constrain the prior on μ to the subspace spanned by the covariates: $\mu=\mathbf{Z} \boldsymbol{\beta}$
(3) In the subspace, we can invert $\mu=\mathbf{Z} \boldsymbol{\beta}$ as $\boldsymbol{\beta}=\left(\mathbf{Z}^{\prime} \mathbf{Z}\right)^{-1} \mathbf{Z}^{\prime} \mu$, giving:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\frac{1}{2} H[\mu, \theta]\right)=\exp \left(-\frac{1}{2} H[\mathbf{Z} \boldsymbol{\beta}, \theta]\right)
$$

the same prior on μ, expressed as a function of $\boldsymbol{\beta}$ (with constant Jacobian).

Say that again?

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal
- Its defined over β_{1}, β_{2} and constant in all directions but $\left(\beta_{1}-\beta_{2}\right)$.

Say that again?

In other words

Any prior information about μ (the expected value of the dependent variable) is "translated" into information about the coefficients β via

$$
\mu_{c a t}=Z_{c a t} \beta_{c a}
$$

A Simple Analogy

- Suppose $\delta=\beta_{1}-\beta_{2}$ and $P(\delta)=N\left(\delta \mid 0, \sigma^{2}\right)$
- What is $P\left(\beta_{1}, \beta_{2}\right)$?
- Its a singular bivariate Normal
- Its defined over β_{1}, β_{2} and constant in all directions but $\left(\beta_{1}-\beta_{2}\right)$.
- We start with one-dimensional $P\left(\mu_{c a t}\right)$, and treat it as the multidimensional $P\left(\beta_{c a}\right)$, constant in all directions but $Z_{c a t} \beta_{c a}$.

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- μ_{i} and μ_{j} can always be compared, even with different covariates.

Advantages of the resulting prior over $\boldsymbol{\beta}$, created from prior over μ

- Fully Bayesian: The same theory of inference applies
- μ_{i} and μ_{j} can always be compared, even with different covariates.
- The normalization matrix Φ is unnecessary (normalization is performed by \mathbf{Z}, which is known)

Basic Prior: Smoothness over Age Groups

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
[\mu(a, t)-\bar{\mu}(a)]
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv
$$

$$
\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \quad \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \quad \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

- Discretize age and time:

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} \theta \sum_{a a^{\prime} t}\left(\mu_{a t}-\bar{\mu}_{a}\right)^{\prime} W_{a a^{\prime}}^{n}\left(\mu_{a^{\prime} t}-\bar{\mu}_{a^{\prime}}\right)\right)
$$

Basic Prior: Smoothness over Age Groups

- Prior knowledge: log-mortality age profile are smooth variations of a "typical" age profile $\bar{\mu}(a)$:

$$
H[\mu, \theta] \equiv \frac{\theta}{A T} \int_{0}^{T} d t \int_{0}^{A} d a\left(\frac{d^{n}}{d a^{n}}[\mu(a, t)-\bar{\mu}(a)]\right)^{2}
$$

- Discretize age and time:

$$
\mathcal{P}(\mu \mid \theta) \propto \exp \left(-\frac{1}{2} \theta \sum_{a a^{\prime} t}\left(\mu_{a t}-\bar{\mu}_{a}\right)^{\prime} W_{a a^{\prime}}^{n}\left(\mu_{a^{\prime} t}-\bar{\mu}_{a^{\prime}}\right)\right)
$$

- where W^{n} is a matrix uniquely determined by n and θ

From a prior on μ to a prior on $\boldsymbol{\beta}$

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta} \mid \theta) & =\exp \left(-\frac{\theta}{T} \sum_{a a^{\prime} t} W_{a a^{\prime}}^{n}\left(\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}\right)\left(\mathbf{Z}_{a^{\prime} t} \boldsymbol{\beta}_{a^{\prime}}\right)\right) \\
& =\exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
\end{aligned}
$$

From a prior on μ to a prior on $\boldsymbol{\beta}$

Add the specification $\mu_{a t}=\bar{\mu}_{a}+\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}$:

$$
\begin{aligned}
\mathcal{P}(\boldsymbol{\beta} \mid \theta) & =\exp \left(-\frac{\theta}{T} \sum_{a a^{\prime} t} W_{a a^{\prime}}^{n}\left(\mathbf{Z}_{a t} \boldsymbol{\beta}_{a}\right)\left(\mathbf{Z}_{a^{\prime} t} \boldsymbol{\beta}_{a^{\prime}}\right)\right) \\
& =\exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} C_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
\end{aligned}
$$

where we have defined:

$$
\mathrm{C}_{a a^{\prime}} \equiv \frac{1}{T} \mathbf{Z}_{a}^{\prime} \mathbf{Z}_{a^{\prime}} \quad \mathbf{Z}_{a} \text { is a } T \times d_{a} \text { data matrix for age group a }
$$

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper)

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper)
- n : defines the prior through the "interaction" matrix W^{n}.

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a^{\prime}} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper)
- n : defines the prior through the "interaction" matrix W^{n}.
- θ : the "strength" of the prior

The Prior on the Coefficients $\boldsymbol{\beta}$

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{\mathbf{a}}^{\prime} \mathbf{C}_{a^{\prime}} \boldsymbol{\beta}_{\boldsymbol{a}^{\prime}}\right)
$$

- The prior is normal (and improper)
- n : defines the prior through the "interaction" matrix W^{n}.
- θ : the "strength" of the prior
- Different age groups can have different covariates: the matrices $\mathbf{C}_{a a^{\prime}}$ are rectangular $\left(d_{a} \times d_{a^{\prime}}\right)$.

Samples From Age Prior

All Causes (m), $\mathrm{n}=1$

Samples From Age Prior

All Causes (m) , $\mathrm{n}=\mathbf{2}$

Samples From Age Prior

All Causes (m), $\mathbf{n}=\mathbf{3}$

Samples From Age Prior

All Causes (m) , $n=4$

Samples From Age Prior

All Causes (m) , $\mathrm{n}=1$

All Causes (m) , $\mathrm{n}=3$

All Causes (m) , $\mathrm{n}=\mathbf{2}$

All Causes (m), $\mathrm{n}=4$

Formalizing (Prior) Indifference

 equal $=$ equal
Formalizing (Prior) Indifference

equal $=$ equal

All Causes (m), $\mathrm{n}=1$

Level indifference

Formalizing (Prior) Indifference

equal $=$ equal

Level indifference
All Causes (m), $\mathrm{n}=1$

Level and slope indifference

Smoothness Parameter

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is
- but what is the smoothness parameter, θ ?

Smoothness Parameter

- The prior:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\theta \sum_{a a^{\prime}} W_{a a^{\prime}}^{n} \boldsymbol{\beta}_{a}^{\prime} \mathbf{C}_{a a^{\prime}} \boldsymbol{\beta}_{a^{\prime}}\right)
$$

- We figured out what n is
- but what is the smoothness parameter, θ ?
- θ controls the prior standard deviation

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathbf{n = 2}$

Samples from Age Prior

All Causes (f), $\mathrm{n}=2$

Generalizations

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.
- Smoothing trends over age groups as they vary across countries, etc.

Generalizations

- The above tools: smooth over a (possibly discretized) continuous variable - age or age groups.
- We can also smooth over time (also a discretized continuous variable).
- Can smooth when cross-sectional unit i is a label, such as country.
- Can smooth simultaneously over different types of variables (age, country, and time).
- We can smooth interactions:
- Smoothing trends over age groups.
- Smoothing trends over age groups as they vary across countries, etc.
- The mathematical form for all these (separately or together) turns out to be the same:

$$
\mathcal{P}(\boldsymbol{\beta} \mid \theta) \propto \exp \left(-\frac{\theta}{2} \sum_{i j} W_{i j} \boldsymbol{\beta}_{i}^{\prime} \mathbf{C}_{i j} \boldsymbol{\beta}_{j}\right), \quad \mathbf{C}_{a a^{\prime}} \equiv \frac{1}{T} \mathbf{Z}_{a} \mathbf{Z}_{a^{\prime}}
$$

Mortality from Respiratory Infections, Males

Mortality from Respiratory Infections, males, $\sigma=2.00$

Mortality from Respiratory Infections, males, $\sigma=1.51$

Mortality from Respiratory Infections, males, $\sigma=1.15$

Mortality from Respiratory Infections, males, $\sigma=0.87$

Mortality from Respiratory Infections, males, $\sigma=0.66$

Mortality from Respiratory Infections, males, $\sigma=0.50$

Mortality from Respiratory Infections, males, $\sigma=0.38$

Mortality from Respiratory Infections, males, $\sigma=0.28$

Mortality from Respiratory Infections, males, $\sigma=0.21$

Mortality from Respiratory Infections, males, $\sigma=0.16$

Mortality from Respiratory Infections, males, $\sigma=0.12$

Mortality from Respiratory Infections, males, $\sigma=0.09$

Mortality from Respiratory Infections, males, $\sigma=0.07$

Mortality from Respiratory Infections, males, $\sigma=0.05$

Mortality from Respiratory Infections, males, $\sigma=0.04$

Mortality from Respiratory Infections, males, $\sigma=0.03$

Mortality from Respiratory Infections, males, $\sigma=0.02$

Mortality from Respiratory Infections, males, $\sigma=0.01$

Mortality from Respiratory Infections, males

Mortality from Respiratory Infections, males, $\sigma=2.00$

Mortality from Respiratory Infections, males, $\sigma=1.51$

Mortality from Respiratory Infections, males, $\sigma=1.15$

Mortality from Respiratory Infections, males, $\sigma=0.87$

Mortality from Respiratory Infections, males, $\sigma=0.66$

Mortality from Respiratory Infections, males, $\sigma=0.50$

Mortality from Respiratory Infections, males, $\sigma=0.38$

Mortality from Respiratory Infections, males, $\sigma=0.28$

Mortality from Respiratory Infections, males, $\sigma=0.21$

Mortality from Respiratory Infections, males, $\sigma=0.16$

Mortality from Respiratory Infections, males, $\sigma=0.12$

Mortality from Respiratory Infections, males, $\sigma=0.09$

Mortality from Respiratory Infections, males, $\sigma=0.07$

Mortality from Respiratory Infections, males, $\sigma=0.05$

Mortality from Respiratory Infections, males, $\sigma=0.04$

Mortality from Respiratory Infections, males, $\sigma=0.03$

Mortality from Respiratory Infections, males, $\sigma=0.02$

Mortality from Respiratory Infections, males, $\sigma=0.01$

Smoothing Trends over Age Groups

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

Smoothing Trends over Age Groups

Log-mortality in Belize males from respiratory infections

Least Squares

Smoothing Age Groups

(m) Belize

(m) Belize

Smoothing Trends over Age Groups and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

(m) Bulgaria

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing

Age and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing

 Age and Time

Smoothing Trends over Age Groups and Time

Log-Mortality in Bulgarian males from respiratory infections

Least Squares

Smoothing

Age and Time

(m) Bulgaria

(m) Bulgaria

(m) Bulgaria

Using Covariates (GDP, tobacco, trend, log trend)

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

(m) Republic of Korea

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

(m) Republic of Korea

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Korean Males

Least Squares

Smooth over age, time, age/time

(m) Republic of Korea

(m) Republic of Korea

(m) Republic of Korea

Using Covariates (GDP, tobacco, trend, log trend)

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Using Covariates (GDP, tobacco, trend, log trend)

 Lung cancer in Males, Singapore
Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Smooth over age, time, age/time

Using Covariates (GDP, tobacco, trend, log trend)

Lung cancer in Males, Singapore

Least Squares

Smooth over age, time, age/time

What about ICD Changes?

Other Infectious Diseases: USA, age 0 (m)

Other Infectious Diseases: Australia, age 0 (m)

Other Infectious Diseases: France, age 0 (m)

Other Infectious Diseases: United Kingdom, age 0 (m)

Fixing ICD Changes

Other Infectious Diseases: USA, age 0 (m)

Other Infectious Diseases: Australia, age 0 (m)

Other Infectious Diseases : France, age 0 (m)

Other Infectious Diseases: United Kingdom, age 0 (m)

A book manuscript, YourCast software, etc.

http://GKing.Harvard.edu

Without Country Smoothing

With Country Smoothing

Many
 Time Series

Coverage of WHO data base (age specific, all causes)

Prior Indifference

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

- where $p(a, t)$ is a polynomial in a (whose degree is the degree of the derivative in the prior)

Prior Indifference

- These priors are "indifferent" to transformations:

$$
\mu(a, t) \rightsquigarrow \mu(a, t)+p(a, t)
$$

- where $p(a, t)$ is a polynomial in a (whose degree is the degree of the derivative in the prior)
- Prior information is about relative (not absolute) levels of log-mortality

Preview of Results: Out-of-Sample Evaluation

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	\% Improvement	
Over Best		
Previous		

Conceivable\end{array}\right]\)

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does considerably better with more informative covariates

Preview of Results: Out-of-Sample Evaluation

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Over Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error		\% Improvement		
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.

Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error in Males (over age and country)

	Mean Absolute Error			\% Improvement	
	Best Previous	Our Method	Best Conceivable	Oer Best Previous	to Best Conceivable
Cardiovascular	0.34	0.27	0.19	22	49
Lung Cancer	0.36	0.27	0.17	24	47
Transportation	0.37	0.31	0.18	16	31
Respiratory Chronic	0.45	0.39	0.26	13	30
Other Infectious	0.55	0.48	0.32	12	30
Stomach Cancer	0.30	0.27	0.20	8	24
All-Cause	0.17	0.15	0.08	12	22
Suicide	0.31	0.29	0.18	7	17
Respiratory Infectious	0.49	0.47	0.28	3	7

- Each row averages 6,800 forecast errors (17 age groups, 40 countries, and 10 out-of-sample years).
- $\%$ to best conceivable $=\%$ of the way our method takes us from the best existing to the best conceivable forecast.
- The new method out-performs with the same covariates, for most countries, causes, sexes, and age groups.
- Does much better with better covariates

