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1 Introduction

We take this opportunity to comment on Herron and Shotts (2003; hereinafter HS) because
of its interesting and productive ideas and because of the potential to affect the way a
considerable body of practical research is conducted. This article, and the literature refer-
enced therein, is based on the suggestions in three paragraphs in King (1997, pp. 289–290).
Because these paragraphs were not summarized in HS, we thought they might be a useful
place to start.

If a second stage analysis is conducted, least squares regression should probably not be used in
most cases, even though it may not be particularly misleading. The best first approach is usually
to display a scatterplot of the explanatory variable (or variables) horizontally and (say) an estimate
of βb

i or βw
i vertically. In many cases, this plot will be sufficient evidence to complete the second

stage analysis.
If it proves useful to have more of a formal statistical approach, and many of the actual values

of βb
i fall near zero or one, then some method should be used that takes this into account. The

data could be transformed, via a logit or probit transformation, or [the “extended model”] could be
applied. . . . Whatever method is chosen, the researcher should be careful to include the fact that
some estimates of βb

i are more uncertain than others.
In practice, a weighted least squares linear regression may be sufficient in many applica-

tions, with weights based on the standard error of βb
i (or other quantity of interest). Researchers

should be careful in applying this simplified method here, and should verify its assumptions with
scatterplots. . . . This is not as theoretically elegant a procedure as the more formal set up in [the
“extended model”] but it is simple, relatively robust, and probably complete enough to be of use
in many applications.

Clearly, the only logically consistent model that has been offered for the issue at hand
is the EI extended model that allows the second-stage covariates to be included in the EI
estimation procedure. EI software now includes a feature that allows for first differences to be
computed if those covariates are included, which should make the extended model somewhat
easier to understand and use. (We discuss how to use the extended model in Section 6.)

Any second-stage analysis is by definition a second-best procedure when judged con-
ditional on the model. Still, second-stage analyses—if they give approximately correct
answers—have the advantage of being easier to understand, use, and evaluate (because
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an estimate of the dependent variable in the second stage is observable); more numeri-
cally stable (hence allowing more covariates to be included and studied); computationally
faster (allowing more analyses to be examined); more amenable to diagnostics in verify-
ing assumptions (because the actual estimated data points can be observed and the fit can
be checked directly); and possibly more robust to certain types of misspecification. The
question at hand is if and when such a procedure can be used to produce answers that are
approximately correct.

HS’s contribution is in pointing out that precinct-level estimates from EI regress to the
mean. This “shrinkage” property is indeed a characteristic of EI, and it is also a characteristic
of every other Bayesian model. Shrinkage results in optimal estimates, that is, with the
smallest possible mean square error. Thus, we agree with the implication of HS’s article
that the best possible estimate of βb

i (e.g., the fraction of blacks who vote), under HS’s
assumptions, is that produced by EI. However, HS also make the interesting and correct
point that using Bayesian mean posterior estimates with this property, like those given by
EI, as dependent variables in least squares (LS) regression can, under some circumstances,
produce biased estimates. No one disputes that second-stage regressions are approximations
or that they cause problems from some theoretical perspectives; the question at hand is when
they cause problems that affect real applied research.

HS study second-stage regression based on LS and conclude that their bias-adjusted
slope is preferable. The article does not mention whether the constant term should be
adjusted. Their slope adjustment is based on linear approximations within the classic linear
econometric theory framework. The problems with HS’s approach that we discuss here
concern assuming linearity when modeling an inherently nonlinear and bounded relationship
(i.e., their algebra by definition miss the information in the bounds), omitting the constant
correction from the paper, never computing the correction they propose when conducting
simulations, and missing the fact that weighted least squares (WLS) corrects problems they
raise. We show how filling in this missing information leads back to the suggestions from
the paragraphs quoted previously.

In addition to making second-stage analyses possible by providing the first precinct-level
estimates from an ecological inference model, the primary advance of EI was in resolving
the half-century long debate between supporters of Goodman’s (1959) unbounded linear
regression approach and Duncan and Davis’s (1953) method of bounds by incorporating
all information from both into the same model. HS fall back to Goodman’s unbounded
approach, and so miss the highly informative deterministic information in the aggregate data.

We replicated HS’s simulations without trouble. We then examined how well their ad-
justed regression procedure fit the observed data based on the estimated β̂b

i and the true
(normally unobserved) βb

i . We find that correcting the slope but not the constant is consid-
erably worse than an unadjusted regression of β̂b

i on Zi and the other procedures discussed
in HS’s paper and the literature we examined. This is true even if we knew the true value
of the adjustment. Unless Z has zero mean, the regression line from this method tends to
miss the cloud of true βb

i points by a wide margin.
We therefore begin by extending HS’s slope adjustment procedure, within their lin-

ear econometric framework, by developing an adjustment for the constant term. We follow
the procedure that we believe Herron and Shotts would have used if they had
tried.1 As it turns out, this fully adjusted second-stage regression method dominates

1Indeed, after we finished a draft, Herron and Shotts told us that they had the same constant correction in a draft
version of their paper, but took it out in the final version to save space. Because HS suggest correcting the slope,
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the slope-only procedure. Indeed, the partially adjusted procedure in HS is never
called for.

Because the only estimators HS offer for their partial adjustment procedure assume
either knowledge of the truth being estimated or that some unknown parameters can be
estimated without error, we develop an estimator without these flaws and apply it to create
full adjustments. We find that this fully empirical version of the full adjustment procedure
is, with two partial exceptions, dominated by (unadjusted) WLS. For one, when the bounds
are wide, the true adjustment factor could make a noticable difference, but the adjustment
itself cannot be estimated reliably, and so the procedure cannot be applied. However, in this
case, of course, researchers should not be running EI in the first place because of extreme
model dependence. For the other, nonlinear relationships obviously cannot be well modeled
by any linear second-stage regression, and so in that case, a logistic (or other nonlinear)
regression procedure is best. Thus, the only situation in which the adjustment would lead to
improvements is when the bounds are wide and the true value of the adjustment is known,
which describes the Monte Carlo procedures HS used to evaluate their method, but of
course not any real application. (Even in this unrealistic situation, the full correction takes
an hour to run, compared to a few seconds for WLS.) Because researchers can easily detect
which situation applies from the available aggregate data, they can always take appropriate
action.

We conclude that researchers with narrow enough bounds to run first-stage EI should
first examine a scatterplot of the covariate horizontally by the bounds on β̂b

i vertically (such
as King, 1997, Fig. 13.2, p. 238) because this scatterplot requires no assumptions at all. We
can sometimes learn a lot from such a graph, including especially a check for nonlinearities
(which normally occur when the points are near zero or one). If nonlinearities are not
apparent, then WLS should be used because it offers approximately unbiased estimates in
second-stage regressions. We also suggest a scatterplot of the covariate horizontally by the
estimate β̂b

i vertically to examine the data being run.

2 A Fully Adjusted Second-Stage Regression Model

We try to stick to HS’s notation where possible and present the fully adjusted method with
their adjustment as a special case.2

First, let the expectation of βb
i conditional on Zi be approximated by

E
(
βb

i

) = αR + γR Zi , (1)

so that estimates of αR and γR are the immediate goal of the analysis. Also, let the expectation
of β̂b

i conditional on Zi be

E
(
β̂b

i

) = αU + γU Zi , (2)

and do not mention constant term corrections, when we refer to the HS partially adjusted procedure, we are
referring to what readers would conclude that Herron and Shotts advocate, even though we now know (from our
subsequent correspondence) that they also believe the corrections discussed in their paper are incomplete for real
applications.

2Our notation deviates from HS only to ensure logical consistency. For example, their Eqs. (7) and (8) have
different dependent variables, βb

i and β̂b
i , set equal to the same entire right side of the equation in both cases

(α + γ ′ Zi + νi ). Later in their paper, they allow γ to differ between the two (calling the first γR and the second
γU ), but do not change the constant term (or error terms). We fix these issues and others.
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which is, of course, well estimated by LS. HS then assumes that the error in estimating β̂b
i

by EI is a linear function of βb
i .

E
(
β̂b

i − βb
i

) = δb
0 + δb

1β
b
i . (3)

Then solving Eq. (3) for E(β̂b
i ) and substituting the result into Eq. (2) gives a more infor-

mative version of Eq. (1):

E
(
βb

i

) =
(

αU − δb
0

1 + δb
1

)
+

(
γU

1 + δb
1

)
Zi . (4)

Thus, we know that the quantities of interest, αR and γR , can be expressed as the intercept
and slope of Eq. (4). If we can estimate the components of each, we can derive a consistent
estimator, at least when HS’s linearity and unboundedness assumptions are not too far off.

3 An Improved Estimation Procedure

HS offer an estimation algorithm for correcting the slope term in their Section 7.2. This
procedure is intuitive, and we can easily generalize it to provide a correction for the intercept
as well. Unfortunately, the procedure itself is flawed for two other reasons. First, it conditions
on the point estimate for the parameters of the truncated bivariate normal, ψ̆ , and of δb

0 and
δb

1 , and thus assumes the absence of estimation uncertainty. Ignoring uncertainty would
bias standard errors and confidence intervals, of course, which perhaps is why HS do
not calculate these. However, because their estimation procedure is nonlinear [because
of the ratios in Eq. (4)], ignoring estimation uncertainty also affects their point estimates
in finite samples. Second, the procedure calls for drawing only a single simulation of
(βb

i , βw
i ) for each observation. As a result, the estimate includes substantial Monte Carlo

approximation error. The error can be eliminated by running their entire procedure many
times and averaging. Although fixing these problems would not have substantially changed
the estimates presented in their paper, they matter in some applications. We therefore develop
and use a new estimation algorithm that corrects these problems, as well as provides the
ability to compute standard errors and confidence intervals, which were not available in
HS’s version.3

The accurate procedure that fully represents the uncertainty of HS’s corrections is com-
putationally slow (taking about an hour to do one run). Also, the standard errors for the
fully adjusted method appear larger than those obtained from LS by about 70% and WLS
by about 30%. For the intercepts, which under full adjustment combine the uncertainty of
three parameters, the standard errors are, on average, 34 times larger than LS and 25 times
larger than WLS. Thus, any reduction in bias that may occur is probably outweighed by

3To define our revised estimation algorithm, let a symbol with a tilde (∼) denote a value of that quantity randomly
drawn from its posterior density. For a given X and T : (1) run EI on X and T ; (2) regress β̂b

i (which comes from
EI) on Zi , yielding the estimated intercept α̂U and slope γ̂U ; (3) draw ˜̆ψ from its posterior provided by EI; (4)
take p draws of (β̃b

i , β̃
w
i ) from a truncated normal density with parameter vector ˜̆ψ ; (5) compute a new Ti as

T̃i = β̃b
i Xi + β̃w

i (1 − Xi ); (6) run EI on Xi and T̃i to yield estimates ( ˆ̃
βb

i , ˆ̃
βw

i ) for all i ; (7) regress ( ˆ̃
βb

i − βb
i )

on βb
i to estimate δb

0 and δb
1 , which we label ˆ̃

δ0 and ˆ̃
δ1; (8) draw α̃U and γ̃U from the posterior provided by

LS; (9) compute the adjusted intercept as (α̃U − ˆ̃
δb

0)/(1 + ˆ̃
δb

0) and adjusted slope as γ̃U /(1 + ˆ̃
δb

i ); (10) repeat
steps (3)–(9) a sufficient number of times to eliminate Monte Carlo approximation error; and (11) average the
simulations in step (10) to get point estimates, take their standard deviation for standard errors, or sort them and
use percentile values for confidence intervals.
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the substantial increase in variance. This is an intuitive result, given that the bias adjust-
ment takes the form of a ratio, and both the numerator (which is LS) and denominator
contain estimation uncertainty. (We confirmed this result with a small number of Monte
Carlo experiments.) Is is also consistent with the experience of others trying to create bias
adjustments in a variety of models outside the field of ecological inference.

4 HS’s Monte Carlo Simulation Procedure

We explain in this section that HS’s Monte Carlo procedure is inappropriate for evaluating
second-stage regressions. The procedure is to draw the true value of the dependent variable,
βb

i , from the EI model without covariates. Then they create the covariate for the second-stage
explanatory variable Zi endogenously as equal to βb

i plus random noise. This procedure
has three flaws.

The first flaw is that the Monte Carlo procedure can be interpreted in three logicially
inconsistent ways and, although HS do not discuss which interpretation was intended, none
of the three make the procedure valid. The first, and in our view most plausible, interpretation
is that by creating Zi with random error, the procedure induces immense errors-in-variables
attenuation bias, quite apart from any attenuation bias that may occur as a result of the
Bayesian shrinkage in the EI estimate.

This problem can be seen clearly by studying the parameters of the model HS created
from which to draw their Monte Carlo data. In this model, the slope of the coefficient on
the covariate in the second-stage regression is 1 (in their notation, γR = 1).4 However, the
estimates of this slope from their simulations of the true βb

i (i.e., without any attenuation
bias in the dependent variable at all) regressed on Z gives a drastically biased estimate.
This slope estimate does not appear in their article, but we were able to replicate their
Table 2 exactly, and in our Table 1 present these numbers. As can be seen, whereas the
theoretical value of γR is 1 according to this interpretation, in each case their estimates
indicate that γ̂R is never larger than 0.19 and on average about 0.07. Thus, because the
unadjusted method is unable to recover the coefficients without shrinkage when using the
true value of the dependent variable, this Monte Carlo setup is inappropriate for assessing
a dependent variable that is estimated (by EI or otherwise).

A second interpretation of the HS Monte Carlo procedure is that γR is the causal effect
of Zi on βb

i . Because many second-stage regressions are designed to be causal, this is
often the most appropriate intepretation. Because Zi was created endogenously, no matter
how one exogenously changes Zi , β

b
i will not budge, and hence, by this interpretation,

the Monte Carlo procedure is setting the causal effect to zero: γR = 0. Thus, because the
numbers in Table 1 are uniformly greater than zero, we know that regressing the true βb

i
on Zi overestimates γR . Therefore, because the unadjusted method is unable to recover the
true coefficients when using the true value of the dependent variable (i.e., even though no
shrinkage occurs or estimation error in the dependent variable exists), the Monte Carlo setup
under this second interpretation is also inappropriate for assessing a dependent variable that
is estimated (by EI or otherwise).

A third way to interpret the true value in HS’s simulations is conditional on each randomly
generated set of τi ’s (i = 1, . . . , n), and hence conditional on each randomly generated Zi .
By this interpretation, each random draw of a set of n observations from the Monte Carlo

4Under this first interpretation of the HS Monte Carlo setup, E(βb
i ) = αR + γR Zi , where Zi = βb

i + τi and
E(τi ) = 0 and so E(Zi | βb

i ) = βb
i . Hence E(βb

i ) = αR + γR E(βb
i + τi ) = αR + γRβb

i , which implies that
αR = 0 and γR = 1.
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Table 1 Comparing the true slope on Z in a
second-stage regression in the HS Monte Carlo
procedure with the estimate based on βb

i (rather
than β̂b

i ) as the dependent variable

Model parameters HS estimates
ψ̆ γ̂R

(0.5, 0.5, 0.1, 0.1, 0) 0.04
(0.75, 0.5, 0.1, 0.1, 0) 0.04
(0.75, 0.75, 0.1, 0.1, 0) 0.04
(0.9, 0.9, 0.1, 0.1, 0) 0.02
(0.5, 0.5, 0.32, 0.1, 0) 0.19
(0.6, 0.6, 0.1, 0.32, 0) 0.04
(0.9, 0.1, 0.32, 0.32, 0) 0.15
(0.5, 0.5, 0.1, 0.1, 0.3) 0.04

Note. The true value of γR depends on the interpretation
used (described in the text). This table replicates the results
of simulations presented in HS’s Table 2. All results are
averages over 100 simulations. The difference and ratios
presented in HS’s Table 2 were successfully replicated and
are not shown here.

data generating process produces a different true value of γR , the value of which is neither
set nor observed by the researcher. This value can be estimated by a LS regression of the
true βb

i on Zi , and it can also be estimated by EI-R. Even if we assume that the LS estimator
is better (because it uses the true βb

i ), comparing the two estimators does not reveal which
is closer to the unknown γR . The Monte Carlo procedure can reveal only how close the
estimators are to each other because the target is unknown and changing over iterations and
the estimators are correlated. By this interpretation, of course, the procedure would miss
the whole point of running Monte Carlo experiments in the first place—creating a world in
which we know the true quantity being estimated and then seeing how good an estimator
is at recovering the known parameter value.

Although by this last interpretation we cannot know the different true γR in each iteration,
we can compute its expected value, that is, the estimand implied by the LS estimator of βb

i on
Zi . However, computing the average γR requires nonlinear approximations,5 which in any
event were not computed in HS and so the result was not offered as a standard of comparison.
Because the Monte Carlo design under this interpretation bears little resemblence to how
second-stage regressions are normally thought of, the standard would have little relevance.
In any event, the advantage of proper Monte Carlo experiments is that these after-the-fact
guesses can be avoided from the start.

Whichever interpretation one has of the HS Monte Carlo procedure, it also suffers from
two other serious problems. First, it artificially rules out the possibility of nonlinear rela-
tionships between βb

i and Zi created by the bounds. That is, by constructing the explanatory
variable, Zi , from the bounded βb

i ’s (plus a normal disturbance), the procedure artificially
restricts the relationship between the two to be linear and never affected by the [0,1] bounds

5That is, under this third interpretation, γR = C(βb
i , Zi )/V (Zi ) = C(βb

i , βb
i + τi )/[V (βb

i ) + V (τi )] = [1 +
1/4V (βb

i )]−1, because V (τi ) was set at 1/4. In this expression, V (βb
i ), in turn, is a nonlinear function of the

parameters of the truncated bivariate normal.
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on βb
i . Within this framework, testing the robustness of the HS adjustment to the sort of

nonlinear relationships that crop up sometimes in applied research is impossible.
Finally, HS’s Monte Carlo simulations do not test the actual adjustment procedure they

propose. All the results they present in their Section 6 rely on the true βb
i ’s to estimate δb

0
and δb

1 , even though this is the one quantity users of second-stage regressions by definition
lack. Appropriately, HS recommend a different estimation procedure (in their Section 7.2)
for use when βb

i is unknown, but leave this procedure untested. Hence, HS’s article offers
no direct evidence that adjustment would be less biased or more efficient than unadjusted
LS in practice.

5 An Improved Monte Carlo Simulation

Most of our conclusions that follow do not depend on changing the simulation method,
but we do so in order to make the results more coherent. To simulate, we follow the logic
of the extended EI model. Thus, we first fix X , the covariates Z (to values uncorrelated
with X ), the values for the intercept and the slope parameter on Z , and the variance and
covariance parameters of the truncated bivariate normal. Then, for each simulation, we draw
the βb

i ’s from the extended EI model conditional on Xi and Zi (without mean centering).
The assumption that Xi and Zi are uncorrelated enables us to run a (first-stage) basic EI
model (i.e., with no covariates) without inducing aggregation bias. (The assumption is, of
course, less important when the bounds are more informative, but we retain it for simplicity
in the simulations that follow.) With this setup, unless the relationship is clearly nonlinear,
a regression of the true βb

i on Zi recovers the intercept and slope coefficients accurately,
effectively correcting the problem with the HS procedure.

We use this Monte Carlo setup to illustrate four prototypical situations that in our experi-
ence map out the space of applications in which the various second-stage methods work in
different ways, at least when we follow the parameter values chosen in HS. (That is, all the
simulations we have run look like these plots or, roughly speaking, convex combinations
of them.)

First, when ecological data have very wide bounds, EI (and any method of ecological
inference) is sensitive to modeling assumptions. In many applications with data such as
these, no ecological inference should be conducted unless one has some special auxiliary
information about the model assumptions. If one nevertheless proceeds to the second stage,
then, because shrinkage probably exists in the βb

i ’s, the true (unobserved) value of the full
adjustment would make for an improvement over LS using the estimated β̂b

i ’s. Of course, the
true adjustment is not known and must be estimated. Unfortunately, it cannot be estimated
reliably because EI models βb

i as a random effect constrained to be within the precinct-level
bounds. If Zi is not in the EI first stage (which is true by definition because if it were
included, we would not need a second stage), then the only information in β̂b

i that could be
predicted by Zi comes from the bounds. The same is true of the adjustment procedure: The
only information with which to estimate δb

0 and δb
1 comes from the bounds. If the bounds

are relatively uninformative, as we assume in this first prototypical case, then there is little
information with which to estimate the adjustment. Of course, this should not be a surprise:
An unbounded random effect variable must be unrelated to all measured variables except
by chance.

Figure 1 plots the covariate Zi horizontally by the true βb
i (in the left graph) and the

estimated β̂b
i (in the right graph) vertically. Note how the unadjusted least squares line

(marked LS) fits the estimated points well (in the right graph), but is attenuated for the true
points (in the left). Because the bounds are all very wide, the variances are almost constant
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Fig. 1 Data with wide bounds. Plot of Zi horizontally by the estimated β̂b
i vertically (in the right

graph) and the true βb
i (in the left graph), with fits for the partially adjusted procedure (PA) in

HS, least squares (LS) and weighted least squares (WLS) almost on top of one another, the fully
adjusted method (FA), and the full adjustment based on the true values of δb

0 and δb
1 (TA). Clearly,

TA fits the true points best, but is unfortunately badly estimated by FA. In this example, insufficient
information exists in the bounds with which to make ecological inferences at all. Data were generated
from the extended EI model with X ∼ Uniform (0, 0.2), Z ∼ Normal (0.5, 0.01), B̆

b
i = Zi − 0.1,

B̆
w

i = Zi − 0.1, σ̆b = 0.05, σ̆w = 0.05, and ρ̆ = 0.

and so the weighted least squares (marked WLS) line is practically on top of the LS line.
The line representing the fully adjusted method using the true values of δb

0 and δb
1 (true

adjustment is marked TA) fits the true points well, and would correct for the attenuation.
The actual fully adjusted method (marked FA) as estimated from the data also appears,
but as a result of the wide bounds, it is not a good estimate, and indeed, is worse than LS
and WLS. Figure 1 also plots the partially adjusted method (marked PA) that a researcher
might implement based on HS’s article, which is more biased than any of the alternatives, a
problem that grows in severity as the mean of Z departs from zero. (The PA and FA lines are
not exactly parallel because PA is calculated by assuming the estimate ˜̆

ψ is known exactly,
whereas FA uses our estimation procedure.) Because the partial adjustment method is never
better than full adjustment, and often dramatically worse, we do not consider it further.

Second, when the bounds are at least somewhat informative (that is, when few of the
bounds are extremely wide), we are in the situation in which we would be more likely to trust
ecological inferences using EI (or another method that takes into account the information in
the precinct-level bounds). When in addition the relationship is approximately (or locally)
linear, we find that LS and WLS usually do as well as, and often better than, the fully
adjusted procedure. Figure 2 gives one example in which LS, WLS, and the fully adjusted
method all give approximately the same estimates.

Third, when some observations have wide bounds and others have narrow bounds, and
β̂b

i is an approximate (or locally) linear function of Zi , (unadjusted) WLS regression is often
substantially less biased than LS, and approximately equivalent to or better than the fully
adjusted procedure.6 This is contrary to HS’s claims that WLS would not make a difference;

6Like all weighted regressions, this procedure would have higher variance than LS. HS studied consistency, and
implicitly bias, but did not address other properties, such as efficiency.
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Fig. 2 Data with informative bounds. Plot of Zi horizontally by the estimated β̂b
i vertically (in the

right graph) and the true βb
i (in the left graph) with fits for least squares (LS) and weighted least

squares (WLS) appearing almost on top of one another, and the fully adjusted method (FA). Note how
all three methods give almost the same answer. Data were generated from the extended EI model,
with X ∼ Uniform (0.2, 1), Z ∼ Normal (0, 0.01), B̆

b
i = Zi + 0.44, B̆

w

i = Zi + 0.68, σ̆b = 0.05,
σ̆w = 0.05, and ρ̆ = 0.

what they missed by applying a linear regression framework to this problem with bounds
and nonlinearity is that the degree of attenuation is greater when the bounds are wider—as
can be seen by the differences between Figs. 1 and 2—and so the weights are correlated
with the attenuation bias and can at least partially correct for it.

Figure 3 provides an example of this phenomenon. We generated the data for this figure
from the same model as Fig. 2, changing only the parameter values so that the points were

Fig. 3 Data with narrow and wide bounds. Plot of Zi horizontally by the estimated β̂b
i vertically

(in the right graph) and the true βb
i (in the left graph) with fits for least squares (LS), weighted

least squares (WLS), and the fully adjusted method (FA). Note how (unadjusted) WLS corrects for
most of the attenuation bias. Data were generated from the extended EI model, with X ∼ 1

2 Uniform
(0, 0.2) + 1

2 Uniform (0.8, 1), Z ∼ Normal (0, 0.01), B̆
b
i = Zi + 0.44, B̆

w

i = Zi + 0.68, σ̆b = 0.05,
σ̆w = 0.05, and ρ̆ = 0.
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Fig. 4 Data with a nonlinear relationship. Plot of Zi horizontally by the estimated β̂b
i vertically

(in the right graph) and the true βb
i (in the left graph) with fits for least squares (LS) and the fully

adjusted method (FA) almost on top of one another, weighted least squares (WLS), and the better
fitting loess regression on the logistic scale (loess). Note how all the linear methods give out of bounds
predictions. Data were generated from the extended EI model, with X ∼ Uniform (0, 1), Z ∼ Normal
(0, 4), B̆

b
i = Zi + 1.16, B̆

w

i = Zi + 1.16, σ̆b = 0.3, σ̆w = 0.3, and ρ̆ = 0.

affected by the bounds. The effect of the wide bounds on some observations can be seen by
the attenuation in the set of points forming a flatter slope in the right graph (as compared to
the left graph which has no such feature). As a result, the LS line is a good deal flatter than it
should be (as judged by the fit to the points in the left graph) but the (unadjusted) WLS line
corrects for most of the attenuation. The FA line, in contrast, overcorrects for attenuation.

Finally, when the relationship is nonlinear, as is often observably the case because of
the bounds, then any (adjusted or unadjusted) linear second-stage procedure can produce
impossible results. In this situation, a scatterplot or an appropriate nonlinear procedure is
better. The fully adjusted procedure in this situation often produces more out-of-bounds
predictions than the unadjusted procedure. (In this case, WLS is also inappropriate, both
because the assumption of linearity does not hold and because β̂b

i ’s at the extremes have
standard errors of zero or nearly so. Giving extra weight to these observations tends to
bias the estimate of the slope downward.) Figure 4 illustrates these issues. In this example,
we also include a nonlinear model by using a loess regression of a logit transformation of
β̂b

i , ln(β̂b
i /(1 − β̂b

i )), on Zi and using simulation to compute the regression line. This line
(marked loess) clearly gives a far better fit than any of the other methods. It is also the only
method that does not extend above 1 or below 0 for βb

i (i.e., into the impossible region)
for some values of Zi . (A linear regression on the logit scale would also stay out of the
impossible region, but the fit would not be as much of an improvement.)

6 The Extended Model

As the only self-consistent second-stage approach, the extended model should probably see
more use. We therefore pause briefly here to discuss an important issue about how to use it.

One apparently obvious, but flawed, way to use the extended model is to study the effects
of the explantory variables only by looking at the truncated normal parameter estimates (αb

and αw in King, 1997, p. 170) and their standard errors. The problem with this approach is
that it does not include the robustness of the bounds that comes from conditioning on Ti .
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To explain, consider a simpler case: estimating the district-wide fraction of blacks who
vote, Bb, without covariates. If the model holds (and the number of people per precinct is
constant over precincts), a consistent and efficient estimator of this quantity is as follows.
(1) Run EI to estimate the five parameters of the truncated bivariate normal. Because they
are on the untruncated scale, (2) compute from them (analytically or by simulation) the
truncated parameters, which of course includes the mean of the precinct parameters, and
hence our estimate.

Suppose, however, that the model is not exactly right. Then we would also want to
condition on T so that the precinct-level bounding information can be included in this
estimate. To do this, use an alternative estimator: (1) Run EI to estimate the five parameters
of the truncated bivariate normal. Then, (2) condition on T and compute estimates of the
fraction of blacks who vote in each precinct, βb

i , by drawing (as in King, 1997) from the
posterior density, P(βb

i | Ti ), all the mass of which falls within the known bounds. Finally,
(3) average the precinct estimates to produce an estimate of Bb, as desired originally.

Because it includes the precinct-level bounds, the second estimator is clearly less sen-
sitive to misspecification than the first. Also, because dealing with misspecification is the
key issue in making ecological inferences in real research, we see little reason to use the
first estimator. An equivalent problem applies in estimating and interpreting αb and αw

directly: the estimates do not include information from the precinct-level bounds. Although
conditional on the model, they are consistent and efficient, they are more sensitive to mis-
specification. Thus, we suggest the same approach to estimating effects from the extended
model: (1) Estimate the parameters of the truncated bivariate normal and αb and αw. (2)
Condition on Ti and compute the conditional densities, P(βb

i | Ti ). (3) Either display all the
densities as a function of Z , such as via a scatterplot of simulations from these densities
vertically by Zi horizontally, or summarize them in some way. The result is much less
sensitive to misspecification.

7 Concluding Suggestions

As suggested in King (1997) and quoted earlier, “The best first approach is usually to display
a scatterplot of the explanatory variable (or variables) horizontally and (say) an estimate
of βb

i or βw
i vertically. In many cases, this plot will be sufficient evidence to complete the

second stage analysis” (p. 289). This approach remains accurate. Indeed, show us the data
is a good general motto for any statistical analysis, especially those with complex nonlinear
and bounded variables such as those resulting from ecological inference. To this scatterplot,
we would suggest adding information on the bounds. This can be done by adding a thin
vertical line representing the bounds on βb

i for each (β̂b
i , Zi ) point plotted (King, 1997,

Fig. 13.2). From this figure, we can then see all the information in the data, precisely how
informative the bounds are, and whether the bounds are of constant or variable width.

For researchers who wish a simple approximation to estimating a second-stage relation-
ship instead of the extended model, the information provided in this article provides a guide.
If enough information to run a first-stage EI model exists and a scatterplot does not indicate
nonlinearity, then weighted least squares is the best approach. Researchers can easily tell
which is appropriate by examining the situations discussed in Section 5.

If a more formal statistical approach seems desirable, then a good method must go beyond
classical linear econometric theory. It must take into account (a) the nonlinear nature of the
problem, (b) the bounded nature of the second-stage dependent variable with the width of
the bounds varying over observations, (c) the heteroskedasticity and the correlation between
bounds and the shrinkage, and (d) the effect of any possible logical inconsistency of the first
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and second stages of the analysis (because, of course, two-step statistical methods need not
be logically consistent to work well; see, e.g., Meng, 1994). At present, the only model that
has been proposed with all these properties is the extended EI model that allows covariates
to be included as part of the EI estimation procedure (King, 1997, Ch. 9). HS are correct
that this extended model is sometimes only weakly identified, but that is only when the
bounds are not narrow enough and X is included among the covariates or highly related
to Z . In other cases, with narrow bounds or even wide ones when Z is unrelated to X ,
the extended model can be strongly identified and so can be used in many cases without
problem. Imai and King (2002) demonstrate how to compute first differences and other
quantities of interest from the extended EI model, and they report on extensions of the EI
software to make this possible.

Econometric theory and the classic linear regression framework works well for what
it was designed. However, in models with nonlinear relationships or sample spaces, or
parameter spaces that are highly and differentially bounded, such as in ecological inference
problems, political methodologists must look elsewhere or develop their own methods.

HS have made an important contribution by highlighting what turns out to be the shrink-
age property of Bayesian point estimates such as those provided by EI. We are in their debt
for pointing this out and stimulating the ideas and discussions offered herein.
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