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Abstract
We offer methods to analyze the “differentially private” Facebook URLs Dataset which, at over 40 trillion cell
values, is one of the largest social science research datasets ever constructed. The version of differential

privacy used in the URLs dataset has specially calibrated randomnoise added, which providesmathematical

guarantees for the privacy of individual research subjects while still making it possible to learn about

aggregate patterns of interest to social scientists. Unfortunately, random noise creates measurement error

which induces statistical bias—including attenuation, exaggeration, switched signs, or incorrect uncertainty

estimates. We adapt methods developed to correct for naturally occurring measurement error, with special

attention to computational efficiency for large datasets. The result is statistically valid linear regression

estimates and descriptive statistics that can be interpreted as ordinary analyses of nonconfidential data but

with appropriately larger standard errors.

Keywords: privacy, measurement error, linear regression, descriptive statistics

1 Introduction

Asvenerablemethodsofprotecting individual identities in researchdatahavebeen shown to fail—

including de-identification, restricted views, clean rooms, and others (see Dwork and Roth 2014;

Sweeney 1997)—differential privacy has emerged as a popular replacement and is now supported
by a burgeoning literature (Dwork et al. 2006). It offers a rigorous mathematical quantification
of privacy loss and mechanisms to satisfy it. One class of differentially private algorithms adds

specially calibrated random noise to a dataset, which is released to the public or researchers. The

noise is calibrated so reliably identifying any research subject is mathematically impossible, but

learning insights about aggregate patterns (where enough of the noise effectively cancels out) is

still possible.

Differential privacy, which seems to satisfy regulators, has the potential to give social scientists

access to more data from industry and government than ever before, and in much safer ways for

individualswhomaybe represented in thedata (King andPersily 2020). However, froma statistical

perspective, adding random noise is equivalent to intentionally creating data with measurement

error which can induce statistical bias in any direction or magnitude (depending on the data and
quantities of interest). This conclusion may be obvious to social scientists and statisticians, but it

is usually not discussed in the computer science literature where differentially private algorithms

are developed.

Put differently, a central goal of social science is inference to unobserved populations from

which the (private) data are selected or processes from which the observed data were gen-

erated. Yet, in this part of the computer science literature, the goal instead is to infer to the

(private) database, so that if without added noise, we could merely calculate a desired quantity

directly from the data, with no need to correct for themeasurement error and produce estimators
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with known statistical properties (like consistency, unbiasedness, etc.) or accurate uncertainty

intervals. As a result, themeasures of “utility” being optimized in this literature often provide little

utility for social science analysts.

We thus adapt methods to our application from the vast statistical literature seeking to correct

for naturally occurring measurement error. Much of the complication in that literature stems

from its goal of estimating quantities of interest from data generation processes with unknown

noise processes, unverifiable assumptions, and unavoidably high levels of model dependence. In

contrast, a principle of differential privacy is that the noise process is always known exactly and

made public (reflecting the view in the cryptography literature that trying to achieve “security by

obscurity” does notwork), which enables us to simplify features of thesemethods and apply them

with fewer assumptions andmore confidence.

We use as a running example the “URLs dataset” that Facebook and Social Science One

(SocialScience.one) recently released, containing more than 40 trillion cell values (Messing et al.
2020). This is both one of the largest social science research datasets in existence and perhaps the

largest differentially private dataset available for scholarly research in any field. Over 100 social

scientists in 17 teams from 10 countries have been given access to this dataset so far, with more

in the approval process. These researchers are studying social media’s effect on elections and

democracy inmany countries, including online disinformation, polarization, echo chambers, false

news, political advertising, and the relationship between social media and the traditional news

media.

The methods we introduce are designed for the specific error process in the URLs dataset

and others like it (such as the Google COVID-19 Community Mobility Reports; Aktay et al. 2020).
Although the URLs dataset includes one of the most commonly discussed noise processes in

the computer science literature, modifications to our methods are required for other types of

differentially private datasets, such as for the differentially private tables the U.S. Census is

planning to release (Garfinkel, Abowd, and Powazek 2018).

In this paper, we offer amethod of analyzing this type of differentially private data release with

point estimates and standard errors that are statistically consistent, approximately unbiased, and

computationally feasible even for exceptionally large datasets. This method estimates the same

quantities that couldhavebeenestimatedwithordinary linear regression if researchershadaccess

to theconfidential data (i.e.,withoutnoise). Althoughstandarderrors fromourapproachare larger

than in the absence of noise, they will be correct (and, of course, vastly smaller than the only

feasible alternative, which is no data access at all). Researchers using this approach need little

expertise beyond knowing how to run a linear regression on nonconfidential data.

Wedescribe the concept of differential privacy and theURLsdataset in Section2; our regression

estimator in Section 3; and several practical extensions in Section 4, including variable trans-

formations and how to understand information loss due to the privacy preserving procedures

by equating it to the familiar uncertainties in sample surveys. Then, in Section 5, we show how

to compute descriptive statistics and regression diagnostics from differentially private data. We

would like todoactual analyses of confidential data and then compare the results to analyseswith

our methods of differentially private data, but this would violate the privacy of those represented

in the data and so is not possible. However, the noise processes here are completely known and so

we are in the unusual situation of knowing all the features of the noise process needed to develop

useful methods without further assumptions.1

1 In principle, corrections to analyses of differentially private data can be made via computationally intensive Bayesian
models (Gong 2019), but many datasets now being released are so large that more computationally efficient methods
may also be useful. The literature includes corrections for statistical bias for some other uses of differential privacy, such
as when noise is added to statistical results, rather than the data as we study here (e.g., Barrientos et al. 2019; Evans et al.
2020, 2022; Gaboardi et al. 2016; Karwa and Vadhan 2017; Sheffet 2019; Smith 2011; Wang, Kifer, and Lee 2018; Wang, Lee,
and Kifer 2015; Williams and McSherry 2010).
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We provide open source software for implementing all our methods available now; Facebook

has also produced a highly engineered version of our software that works for very large datasets.

Themethodsofferedherewill alsobe included ingeneral open sourcedifferential privacy software

being developed in a collaboration between Microsoft and Harvard University.

2 Differential Privacy and the Facebook URLs Dataset

Instead of trying to summarize the extensive and fast growing differential privacy literature, we

provide intuition by simplifying asmuch as possible, and afterwards add complications onlywhen

necessary to analyze the URLs Dataset. Our goal here is to provide only enough information about

differential privacy so researchers can analyze data protected by it. For more extensive intro-

ductions to differential privacy, see Dwork and Roth (2014) and Vadhan (2017) from a computer

science perspective and Evans et al. (2020) and Oberski and Kreuter (2020) from a social science

perspective. Dwork et al. (2006) first defined differential privacy by generalizing the social science
technique of “randomized response” used to elicit sensitive information in surveys (e.g., Blair,

Imai, and Zhou 2015; Glynn 2013).

LetDbeaconfidential dataset, andM (D )—a functionof thedata—bea randomizedmechanism

for producing a “differentially private statistic” from D, such as a simple cell value, the entire
dataset, or a statistical estimator. Including randomnoise as part ofM (D ) iswhatmakes its output

privacy protective. A simple example adds mean zero independent Gaussian noise, N (0,S2), to

each cell value in D, with S2 defined by a careful analysis of the precise effect on D of the inclusion
or exclusion any one individual (possibly varying within the dataset).

Consider now two datasets D and D ′ that differ by, at most, one research subject. (For a stan-

dard rectangular dataset with independent observations like a survey, D and D ′ differ by at most

one row.) The principle of differential privacy is to choose S so thatM (D ) is indistinguishable from
M (D ′), where “indistinguishable” has a precise mathematical definition. The simplest version

of this definition (assuming a discrete sample space) defines mechanism M as ε-differentially

private if

Pr[M (D ) =m]

Pr[M (D ′) =m]
≤ eε (1)

for any value m (in the range of M (D )) and any datasets D and D ′ that differ by no more than

one research subject, where ε is a policy choice made by the data provider that quantifies the

maximumlevel of privacy leakageallowedwith smaller valuespotentially givingaway lessprivacy.

Equation 1 can bewrittenmore intuitively as Pr[M (D ) =m]/Pr[M (D ′) =m] ∈ 1±ε (because eε ≈

1 + ε for small ε). The probabilities in this expression treat the datasets as treated as fixed with

uncertainty coming solely from the randomized mechanism (e.g., the Gaussian distribution). The

bound provides only a worst case scenario, in that the average or likely level of privacy leakage is

considerably less than ε, often by orders of magnitude (Jayaraman and Evans 2019).

A slightly relaxed definition, used in the URLs dataset, is known as (ε,δ)-differential privacy

(or “approximate differential privacy”). This definition adds a small offset δ to the numerator of

Equation 1 (a special case of which, with δ = 0, is ε-differential privacy), thus requiring that one of

the probabilities be bounded by a linear function of the other:

Pr[M (D ) =m] ≤ δ + eε ·Pr[M (D ′) =m] . (2)

The URLs dataset was constructed with δ = 0.00005 and ε varying by variable. The noise S is then
defined, also separately for each variable, to optimize the privacy-utility trade off by computing a

deterministic function of these parameters (as described in Bun and Steinke 2016).
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To be specific, we focus on the “breakdown table” in the URLs dataset, which is a rectangular

dataset containing about 634 billion rows and 14 confidential variables (the table also contains

a range of nonconfidential variables). All the confidential variables in this dataset are counts, to

which mean-zero independent Gaussian noise is added before researchers are allowed access.

(The privatized variables are thus no longer restricted to be nonnegative integers.)

To provide some context, we describe the construction of the raw, confidential data and then

explain how noise was added. In this dataset, each row represents one cell of a large cross-

classification (after removing rows with structural zeros) of 38million URLs (shared publicly more

than about 100 timesworldwide), by 38 countries, by 31 year-months, by 7 age groups, by 3 gender

groups, and (for the United States) by a 5 category political page-affinity variable. Then, for each

of these rows representing a type of user, the confidential variables are counts of the number

of users who take a particular action with respect to the URL, with actions (and the standard

deviation of the noise S for the corresponding variable) including view (S = 2228), click (S = 40),

share (S = 14), like (S = 22), and share_without_click, comment, angry, haha, love, sad, wow,

marked_as_false_news, marked_as_hate_speech, marked_as_spam, marked_as_spam (each

with S = 10). User-actions are counted only once for any one variable in a row, and so a user who

“clicks” on the same URL multiple times adds only 1 to the total count in that row. The specific

values of S for each variable are computedbasedonhowmanydifferent types of actions each user
takes on average in the data. Different levels of noise were added to different variables because,

in this dataset, each user may be represented in the data inmultiple rows (by clicking onmultiple

URLs) and because users tend to take some actions (like “views,” which are merely items that

pass by on a user’s Facebook news feed)more than others (like actively clicking “angry”). Detailed

privacy justification for how Swas determined for each column appear in Messing et al. (2020); for
statistical purposes, however, the values of S for each variable is all we need to know to build the
bias corrections below, and to analyze the data.

Differential privacy has many important properties, but two are especially relevant here: First,

the ε and δ values used for different cell values in a dataset compose in that if one cell value
is protected by ε1,δ1 and a second cell is protected by ε2,δ2, the two cell values together are

(ε1 + ε2,δ1 + δ2)-differentially private (with the same logic extending to any number of cells).

This enables data providers to decide how much privacy they are willing to expend on the entire

dataset, to parcel it out, and to rigorously enforce it.

Second, the properties of differential privacy are retained under post-processing, meaning
that once differentially private data is created, any analyses of any type or number may be

conducted without further potential privacy loss. In particular, for any statistic s (·) that does not

use confidential information, if dataset M (D ) is (ε,δ)-differentially private, then s (M (D )) is also

(ε,δ)-differentially private, regardless of s (·), potential adversaries, threat models, or external

information. This enables us to develop statistical procedures to correct bias without risk of

degrading privacy guarantees.

3 Linear Regression Analysis

We now provide a tool intended to provide estimates from a linear regression analysis on the

confidential data. We present an overview in the form of intuition and notation (Section 3.1, point

(Section 3.2) and variance (Section 3.3) estimation, Monte Carlo Evidence (Section 3.4), and a

reanalysis of real data from a published article (Section 3.5).

3.1 Intuition and Notation
Suppose, we obtain access to the codebook for a large dataset but not the dataset itself. The

codebook completely documents the dataset without revealing any of the raw data. To decide

whether it is worth trying to obtain full access, we plan a data analysis strategy. For simplicity and
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computational feasibility for very large collections like theURLsdataset,wedecide toapproximate

whatever the optimal strategy is with a linear regression. Even if the true functional form is not

linear, this would still give the best linear approximation to the true form (Goldberger 1991). (We

know thatmore sophisticated statisticalmethods applied to nonconfidential data can be superior

to linear regression, but it is anopenquestion as towhether estimates from thosemodels, suitably

corrected for noise in the context of differential privacy,wouldgive substantivelydifferent answers

to social science research questions or whether the extra uncertainty induced by the noise would

make the differences undetectable.)

To formalize, let y be an n × 1 vector generated as y = Z β + ε, where Z is an n ×K matrix of

explanatory variables, β is a vector of K coefficients, and ε (reusing the same Greek letter as in

Section 2 for this alternative purpose) is a n×1 vector distributedwithmean vector 0 and variance

matrixσ2I ; the error term ε can be normal but need not be. The goal is to estimate β andσ2 along

with standard errors.

If we obtained access to y and Z, estimation would be easy: we merely run a linear regression.
However, suppose the dataset is confidential and the data provider gives us access to y but not Z,
which we are permitted to see only through a differentially private mechanism. (The dependent

variablewill also typically be obscured by a similar randomobservationmechanism, but it creates

onlyminor statistical problems and sowe assume y is observed until Section 4.1.) Thismechanism
enables us to observeX =M (Z ) = Z +ν, where ν is unobserved independent randomGausssian

noise ν ∼N (0,S2). The error term ν has the same n ×K dimensions as X and Z so that the variance
matrix S2 ≡ E (ν ′ν/n) that generates it can have any structure chosen by the data provider. For the

URLs data, S2 is diagonal, to apply different noise to each variable depending on its sensitivity,

although in many applications it is equal to s2I for scalar s2, meaning that the same level of

independent noise is applied to every dataset cell value. (Withmore general notation thanwe give

here, S2 could also be chosen so that different noise levels are applied to different data subsets.)

In statistics, this random mechanism is known as “classical measurement error” (Blackwell,

Honaker, and King 2017; Stefanski 2000). With a single explanatory variable, classical measure-

ment error is well known to bias the least squares coefficient toward zero. With more than one

explanatory variable, and one or more with error, bias can be in any direction, including sign

switches. For intuition, suppose the true model is y = β0 + β1Z1 + β2Z2 + ε and β1 > 0. Suppose

also Z2 is a necessary control, meaning that failing to control for it yields a negative least squares

estimate of β1. Now suppose, Z2 is not observed and so instead we attempt to estimate the same

model by regressing y on Z1 and X2 = Z2 + ν. If the noise added is large enough, X2 will be an

ineffective control and so the least squares estimate of β1 will be biased and negative rather than

positive.

The goal of this paper is to use the differentially private data to estimate the same linear regres-

sion as we would if we had access to the confidential data: to produce consistent and unbiased

estimates of β , σ2, and the standard errors. Our methods are designed so that researchers can

interpret results in the same way as if they had estimates from a regression of y on Z. The only
difference is that we will have larger standard errors by observing X rather than Z. In fact, as we
show in Section 4.3, our results are equivalent to analyzing a random sample of the confidential

data (of a size we estimate) rather than all of it.

Although the methods we introduce can also be used to correct for measurement error occur-

ring naturally, we have the great advantage here of knowing the noise mechanism M (·) exactly

rather than having to justify assumptions about it.

3.2 Point Estimation
The linear regression model has two unknown parameters, the effect parameters β and the

standard error of the regression, σ2. We now introduce consistent estimators of each in turn. For
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expository purposes, we do this in three stages for each: a consistent but infeasible estimator, an

inconsistentbut feasible estimator, andaconsistent and feasible estimator.Weshow inSection3.4

that for finite samples each of the consistent and feasible estimators is also approximately unbi-

ased.

3.2.1 Estimatingβ . Webeginwithestimators forβ . First is the consistentbut infeasibleestimator,which
is based on a regression of y on Z (which is infeasible because Z is unobserved). The coefficient
vector is

β̂ = (Z ′Z )−1Z ′y = (Z ′Z )−1Z ′(Z β +ε) = β + (Z ′Z )−1Z ′ε. (3)

LettingΩ ≡ plim(Z ′Z /n) (the probability limit) and noting that plim(Z ′ε/n) = 0, it is easy to show
that this estimator is statistically consistent: plim(β̂ ) = β +Ω−10 = β .

Second is our inconsistent but feasible estimator, based on a regression of y on X. Letting Q =

X ′X , we define this estimator as

b = Q−1X ′y = Q−1X ′Z β +Q−1X ′ε. (4)

Because Q = Z ′Z + ν ′ν + Z ′ν + ν ′Z and X ′Z = Z ′Z + ν ′Z , we have plim(Q/n) = Ω + S2 and
plim(X ′Z /n) = plim(Z ′Z /n) =Ω . Then we write plim(b) = (Ω + S2)−1Ωβ = Cβ where

C = (Ω + S2)−1Ω . (5)

As long as there is some measurement error (i.e., S2 � 0), C � I , and so b is statistically inconsis-
tent: plim(b) � β . This expression also showswhy the inconsistency leads to attenuationwith one
covariate (since S is a scalar), but may result in any other type of bias with more covariates.
Finally, we give a statistically consistent and feasible estimator (see Warren, White, and Fuller

1974). To begin, eliminate the effect of the noise by defining Ω̂ = Q/n − S2, which leads to the

estimator Ĉ−1 = Ω̂−1(Ω̂ + S2) = [(Q/n)− S2]−1(Q/n). Then we can write our estimator as:

β̃ = Ĉ−1b =

(
X ′X

n
− S2

)−1
X ′y

n
, (6)

which is statistically consistent: plim(β̃ ) = β .

3.2.2 Estimating σ2. Next, we follow the same strategy in developing estimators for σ2. First, the

consistent but infeasible estimator isV (y −Z β ). Second,we construct the inconsistent but feasible
estimator by first using the observed X in place of Z:

V (y −Xβ ) =V [y − (Z +ν)β ]

=V (y −Z β )+β ′S2β

= σ2 +β ′S2β .

And so even if we observed β , the usual estimator of σ2 would be inconsistent. Finally, our
consistent and feasible estimator uses a simple correction

σ̂2 =
1

n
(y −X β̃ )′(y −X β̃ )− β̃ ′S2β̃ , (7)

which is statistically consistent: plim(σ̂2) = σ2.
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3.3 Variance Estimation
Ourgoal in this section is todevelopacomputationally efficient varianceestimator for β̃ thatworks

even for exceptionally large datasets. This is especially valuable because the computational speed

of bootstrapping and direct analytical approaches (Buonaccorsi 2010) degrade fast as n increases
(see Section 3.4). We develop an approach so that, after computing the point estimates, most of

the computational complexity is not a function of the dataset size.

We estimate the variance using extensions of standard simulation methods (King, Tomz, and

Wittenberg2000). Todo this, note that β̃ in Equation6 is a functionof twosetsof randomvariables,

X ′X andX ′y . Because we cannot reasonably make the independence assumptions required for

Wishart-related distributions, we take advantage of the central limit theorem (and extensive finite

sample tests) and approximate the [K (K +1)/2+K ] ×1 vectorT = vec(X ′X ,X ′y ) by simulating

from amultivariate normal, T̃ ∼N
(
T ,V̂ (T )

)
, withmeans computed from the observed value of T

and covariance matrix:

V̂ (T ) =

X ′
1X1 X ′

1X2 · · · X ′
KXK X ′

1y · · · X ′
K y��������������

	











�

X ′
1X1

X ′
1X2

... Ĉov(X ′
KXj ,X

′
�Xm ) Ĉov(X ′

K y ,X
′
j Xm )

X ′
KXK

X ′
1y
... Ĉov(X ′

K y ,X
′
j Xm ) Ĉov(X ′

K y ,X
′
j y )

X ′
K y

. (8)

Appendix A derives the three types of covariances, Cov(X ′
k Xj ,X

′
�Xm ), Cov(X ′

k y ,X
′
j y ), and

Cov(X ′
k y ,X

′
j Xm ), and gives consistent estimators for each. Then we simply draw many values

of T from this distribution, substitute each in to Equation 6 to yield simulations of the vector β̃ ,

and finally compute the sample variance matrix over these vectors.

3.4 Monte Carlo Evaluation
Thus far, we have shown that our estimator and standard errors are statistically consistent, which

is a useful statistical property for analyzing thehugeURLsdataset.Wenowgo further and illustrate

some of its finite sample properties via Monte Carlo simulations. Let Z1 ∼ Poisson(7), and (to

induceacorrelation)Z2 =Poisson(9)+2Z1. Then foreachof500simulations,draw y =10+12Z1−

3Z2 +ε, where ε ∼N (0,22). Thismeans that the outcome variable is conditionally normalwithout

differentially private noise added. We also add a different noise variance for each covariate, with

S2 (the standard deviation of the noise for the second variable) fixed at 1 for all simulations. We

have studiedmanydatagenerationprocesses for these simulations, includingnonlinearities, error

structures, variancematrices, and distributions, all with similar results. Parameter values we used

are given in the results we now present. Our figures reflect typical analyses of large datasets, such

as the Facebook URLs data, using n = 100,000. Because the point of differential privacy is to hide

the contribution of any one research subject, very small datasets require enough noise, for a given

privacy parameter, to prevent a researcher frommaking valid inferences about any individualwho

may be in the data. We find that our estimator is approximately unbiased in sample sizes down to

about n = 2,000 with moderate noise and smaller with less noise, the results for which we also

discuss.

In Figure 1, we give results for point estimates averaged over our 500 simulations. In the left

panel, we plot statistical bias vertically by S1 (the standard deviation of the differentially private
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Figure 1.Point Estimates, evaluatedwith respect to statistical bias (leftpanel) and rootmean square standard
error (right panel). In both panels, results for least square coefficients are in orange and for our estimators are
in shades of blue.

noise added to the first variable) horizontally. The least squares slope coefficients (b1 and b2 in

orange) indicate little bias when S1 = 0 (at the left) and fast increasing bias as the noise increases.

(In addition to bias, b2 has the wrong sign when S1 > 2.) In contrast, our alternative estimator for

both coefficients (β̃1 and β̃2 in different shades of blue) is always unbiased, which can be seen

by the horizontal lines plotted in blue at about zero bias for all levels of S1. This estimator even

remains unbiased for all levels of error, even when the measurement error in X has more than
twice the variance as the systematic variation due to the true Z1.

The right panel of Figure 1 plots vertically the rootmean square error over the 500 simulations,

by S1 horizontally. With no noise at the left side of the plot, both estimators and coefficients are

about the same (they are not zero because S2 = 1 for the entire simulation). As the noise increases

(and we move horizontally), the root mean square error increases dramatically for both least

squares coefficients (in orange) but staysmuch lower for bothof the estimators fromourproposed

approach (in blue).

To illustrate performance in smaller samples, we reran the analyses in the left panel of Figure 1

with n = 2,000 and S1 between 0 and 2 in increments of 0.5. The average bias in these runs is

0.0095 for β̃1 and 0.0118 for β̃2. With many fewer observations or smaller values of the privacy

parameter ε, differential privacy obscures too much of the remaining signal to be useful, leaving

open the possibility of bias or unacceptably large standard errors. This is of course by the design

of differential privacy because with smaller numbers of observations obscuring the presence or

absence of a large outlier requires substantially more noise.

We also study the properties of the standard errors of our estimator in Figure 2. The left panel

plots the true standard deviation vertically in light blue for each coefficient and the standard

error in dark blue. For each coefficient, our standard error (averaged over the 500 simulations)

is approximately equal to the true standard deviation for all values of S1.

Finally, in the right panel of Figure 2, we summarize the compute time of our estimator (labeled

“simulation”) compared toanavailable analytical approach (Buonaccorsi 2010, p.117),with time to

completion vertically and n horizontally. Obviously, our approach is much more computationally
efficient. Between n = 100,000 and n = 5,000,000, the two end points of the sample sizes we

studied, time to completion increased by a factor of 70 for the analytical solution but only 4.85 for

our approach. For applications we designed this method for, with much larger sample sizes, the

analytical approach is infeasible and these dramatic speed increases may be especially valuable.
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Figure 2. Standard Errors, evaluated in terms of bias (left panel) and time to completion (right panel). In both
panels, results for least square coefficients are in orange and for our estimators are in shades of blue.

Table 1. Uncorrected versus corrected regression estimates in Facebook URLs data. Bold entries are dis-
cussed in the text. (Estimates computed by the authors.)

Age: 18–24 Age: 65+

Corrected Uncorrected Corrected Uncorrected

Likes −0.5332 0.0125 0.2014 0.3262

(0.1698) (0.0004) (0.0010) (0.0002)

Views 0.0109 0.0001 0.0160 0.0028

(0.0014) ( < 0.0001) (0.0001) (< 0.0001)

(Intercept) 0.0109 0.0455 −0.3895 0.1425

(0.4967) (0.0083) (0.5717) (0.0197)

3.5 Empirical Evaluations
We now conduct two empirical evaluations: First, we use Facebook URLs data to evaluate the

impact of our corrections and how badly we would be mislead without them. Second, we use

a publicly available dataset and treat it as if it were private but we happen to have access, thus

enabling us to compare our estimates to that from an analysis of the true “private” data.

3.5.1 Facebook URLs Data. For this illustration of our methodology, we study age differences in “shar-

ing” behavior of ideologically conservative Facebook users for URLs that are “liked” more often

(controlling how often they are viewed).2 We thus specify a regression of the number of times a

user “shares” a URL with their friends as a function of the number of users who indicate that they

“like” it, conditional on the numberwho have viewed it. We estimate this regressionmodel for the

young (18–24 year olds) and the elderly (those over 65) on 1.37 million URLs as observations.

Figure 1givesour resultswithkeyestimates inbold.We findoverall that, inaggregate, theyoung

tend to share articles they disagree with, whereas the elderly tend to share articles they agree

with—but this result would be missed entirely without our approximately unbiased estimator.

Our estimator (in columns marked “Corrected”) reveals that a URL with a thousand more likes is

shared 533 fewer times for the young but 201more times for the elderly (both with small standard
errors). However, estimates for the (standard biased ordinary least squares) regression estimator

2 To do this, we subset the massive URLs dataset (Messing et al. 2020) to conservative users in the United States, and then
study all URLs shared on Facebook in October 2018 that were reported as false news by at least one user, andwere publicly
shared in the United States more than in any other country.
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Figure 3. The consequences of correcting versus ignoring noise.

(in columnsmarked “Uncorrected”)miss this pattern completely, as both coefficients are positive,

with very small standard errors.

3.5.2 Private versus Privatized Data Analyses. Wenow illustrate our technology by comparing analyses

onprivatedata (fromHershandNall 2016)with that onnoisyprivatizeddata.We startwithpublicly

available data, add differentially private noise, and then show the consequences of ignoring and

then correcting for this noise, in comparison to the analysis on the private data. This dataset and

all our code is available in the replication data file accompanying this article.

We first run a linear regression, across 2,575 state legislative election districts in 29 states, of

the Republican proportion of those registered on the proportion of registered voters who are

African American, controlling formedian district income, and a binary indicator for the South. Our

quantity of interest is the conditional effect of race on registration, under this specification.We run

the analysis first in the private data and obtain an estimate of approximately −0.3, meaning that

a homogeneous African American district has 30 percentage points less Republican registration

than a district without any African Americans, even after adjusting for income and region. This

result is illustrated in Figure 3 with the vertical dashed blue line marked “Private.”

We then create 500 datasets by adding differentially privatizing noise to the percentage African

Americans and themedian incomeand, for each, rerun this regression both ignoring the noise and

then correcting for it. We plot a histogram of the 500 runs ignoring the noise in Figure 3 (in orange

marked “Naive”). This density is both far from the true private estimate and overconfident, the

combinationofwhich is especially dangerousof course: ignoring thenoisewouldbeabigmistake.

We also plot a histogramof our bias corrected estimates (in bluemarked “bias corrected”)which is

centered around the trueprivate estimate indicating that it is approximately unbiased; its variance

reflects the uncertainty due to the added noise.

4 Extensions

Wenowextendour regressionmodel todifferentially privatedependent variables and transforma-

tions of explanatory variables, and we show how to quantify the noise-induced information loss

in easy-to-understand terms.

4.1 Differentially Private Dependent Variables
Until now, we have assumed that y is observed. However, suppose instead y is confidential and
so we are only permitted to observe a differentially private versionw = M (y ) = y + η, where η ∼

N (0,S2
y ) and S

2
y is the variance of the noise chosen by the data provider.
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We are thus interested in the regressionw = Z β + ε, where as in Equation 3.1 ε has mean zero

and variance σ2. For this goal, our estimators for β̃ and its standard errors retain all their original

properties and so no change is needed. The only difference is the estimator for σ2. One possibility

is to redefine this quantity as including all unknown error, which is ε−ν. If, instead, we wish σ2 to

retain its original definition, then we would simply use an adjusted estimator: σ̃2 = σ̂2− S2
y .

These results also indicate that if we have a dependent variable with noise but no explanatory

variables, or explanatory variables observedwithout error, using β̃ is unnecessary. A simple linear

regression will remain unbiased. This also means that descriptive statistics involving averages, or

other linear statistics like counts, of only the dependent variable require no adjustments. Finally,

we note that the results in this section apply directly to problems with error in both explanatory

and dependent variables.

4.2 Transformations
Privacy protective procedures also complicate the proper treatment of transformations. We con-

sider two examples here. First, scholars often normalize variables by creating ratios, such as

dividing countsby the total population.Unfortunately, the ratioof variables constructedbyadding

independent Gaussian noise to both the numerator and denominator has a very long tailed

distribution with no finite moments. This means that the distribution can be unimodal, bimodal,

symmetric, or asymmetric and will often have extreme outliers (Diaz-Frances and Rubio 2013). In

addition to thebiasanalyzedabove, thisdistribution isobviously anightmare fordataanalysis and

should be avoided. In its place, we recommend merely adding what would be the denominator

as an additional control variable, which under the approach here will return consistent and

approximately unbiased estimates. See Evans and King (2021b) for methodological extensions to

proportions and weighted averages.

Second, because interactions are inherently nonlinear in both the variables and the noise,

different statistical procedures are needed to avoidbias. Consider twooptions. In one,we can con-

dition on known variables that may be in the data, such as defined by subgroups or time periods.

One way to do this properly is to compute β̃ within each subgroup in a separate regression. Then

the set of these coefficients canbedisplayedgraphically ormodeled, using themethodsdescribed

here, with β̃ as the dependent variable and one or more of the existing observed or differentially

private variables on the right side. For example, with a dataset covering 200 countries, we can

estimate a regression coefficient within each country, and then run a second regression using the

methods described here (at the country level with n = 200) of β̃ , as the dependent variable, on

other variables aggregated to the country level. (Aggregating private variables to the country level

reduces implied S, which must be included when doing this second run.)
The other way to include interactions is by estimating the parameters of a regression like

y = β0 + β1X1 + β2X2 + β3X3 + β4(X1 · X2) + ε. To estimate this regression using differentially

private data, and without bias, requires some adjustments to our strategy, which we develop in

Appendix B and include in our software.

4.3 Quantifying Privacy Information Loss
To quantify the information loss due to differential privacy, we compare the increase in the

standard error of the estimate of β , in analyzing the original confidential dataset using b, to the
differentially private dataset standard error we have using β̃ . We quantify this information loss

following Evans et al. (2020) by equating it the analysis of a random sample from the confidential

data without noise. The size of this random sample compared to the full sample will be our

estimate of the information lost.

Thus define bn as the (least squares) estimator we would calculate if the data were released

without differentially private noise, and β̃n as our estimator, where in both cases the subscript
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denotes the number of observations on which it is based. We then estimate the vector n∗ (where

n∗ < n) such that diag[V (bn∗ )] = diag[V (β̃n )]. Sincemost researchers are focused on one quantity

of interest (at a time) consider, without loss of generality, just coefficient k. Then sinceV (bkn∗ ) ∝
1/n∗ and V (β̃ k

n ) ∝ 1/n we can write, V (bkn∗ ) = nV (bkn )/n
∗ = V (β̃ k

n ). Hence, the proportion of

observations lost to the privacy protective procedures is

Lk =
n −n∗

n
= 1−

V (bkn )

V (β̃ k
n )
. (9)

We can estimate L easily by estimating its components. Because V (bkn ) = σ2(Z ′Z )−1, we

estimate it as V̂ (bkn ) = σ̂2Ω̂−1. We estimateV (β̃ k
n ) with the procedures in Section 3.3.

5 Descriptive Statistics and Diagnostics

Best practices in data analysis normally involves careful balancing: trying not to be fooled either

by oneself—due to “p-hacking” or inadvertently biasing analysis decisions in favor of our own
pet hypothesis—or by the data—due to missing one of many well known threats to inference.
Avoiding the former suggests tying one’s hands through preregistration or correcting for multiple

comparison problems ex post, whereas avoiding the latter suggests running as many tests and

diagnostics as possible. Remarkably, the noise in differentially private data analysis prevents us

from fooling ourselves to a degree automatically, by making some types of overfitting impossible

(Dwork et al. 2015), and thus leaving the best practice for differentially private data analysis to
mainly focus on avoiding being fooled by the data. This process is hindered, however, because

confidential data are not accessible and directly studying the observed data (with noise) will likely

lead to biased conclusions.

Our strategy, then, is to offer methods that enable researchers ways of finding clues about the

private data through appropriate descriptive analyses of the available differentially private data.

We introduce methods in stages, from simple to more complex, including unbiased estimates of

the moments (Section 5.1), histograms (Section 5.2), and regression diagnostics (Section 5.3).

5.1 Moments
We show here how to estimate the sample moments of a confidential variable Z, treated as fixed,
given only a differentially private variableX = Z +ν. This is important because, if S (the standard
deviation of the noise) is large or the features of interest of X are relatively small, the empirical
distribution of X may look very different from Z. We first offer an unbiased estimator of the raw
moments and then translate them to the central moments.

Denote the rth raw moment by μ ′
r ≡ E [X r ], and the rth central moment by μr ≡ E [(X −

E [X ])r ]. Then rawmoment r is μ ′
r ≡

1
N

∑
i Z

r
i (for r = 1, . . . ). Štulajter (1978) proves that for normal

variables like X (given Z),

E [Sr Hr (Xi /S )] = Z r
i , (10)

where Hr (x ) is a Hermite polynomial. Therefore, an unbiased estimator is given by:

μ̂ ′
r =

Sr

n

∑
i

Hr (Xi /S ). (11)

Equation 10 and the linearity of expectations shows that μ̂ ′
r is unbiased. More precisely,

E
[
Sr

n

∑
i Hr (Xi /S )

]
= E [μ̂ ′

r ] = μ ′
r . With these unbiased estimates, we construct unbiased estima-

tors of the central moments using this relationship (Papoulis 1984): μr =
∑r

k=0

(r
k

)
(−1)n−k μ ′

k μ
n−k
1 .
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For instance, the second moment (the variance), μ2, is μ2 = −μ1 + μ ′
2 and the skewness (μ̃3) and

kurtosis (μ̃4) are transformations:

ˆ̃μ3 =
μ̂ ′
3−3μ̂1μ̂2 + μ̂31

μ̂
3/2
2

, ˆ̃μ4 =
−3μ̂41 +6μ̂ ′

2μ̂
2
1 −4μ̂ ′

1μ̂
′
3 + μ̂4

μ̂22
. (12)

We also derive the variance of these moments in Appendix C.

5.2 Histograms
Because the empirical density of the confidential data Z can be determined by all the moments,
we tried to estimate the histogram from the first R ≤ n moments via methods such as “inversion”

(Mnatsakanov 2008) and “imputation” (Thomas, Stefanski, and Davidian 2011). Unfortunately, we

found thesemethods inadequate for differentially private data. When S is large, too fewmoments
can be estimated with enough precision to tell us enough about the density and, when S is
small, the estimated distribution of Z closely resembles that of X and so offers no advantage.
This problem is not a failure of methodology, but instead, a result of the fundamental nature of

differential privacy: While protecting against privacy leakage, it also prevents us from learning

some facts about the data that would have been useful for analysis. Statistically, recovering a

histogram is especially difficult because the normal noise process is in the class of “supersmooth”

densities (Fan 1991). This problem ismost obvious for outliers, which cannot be detected because

extremes in the data are what differential privacy was designed to protect.

Since we cannot make out the outlines of the histogram through the haze of added noise, we

turn to a parametric strategy with ex post diagnostic checks. That is, we first assume a plausible

distribution for the confidential data and estimate its parameters using our methods from the

differentially private data. After this parametric step, we then perform an ex post diagnostic

check by comparing the higher-ordermoments we are able to estimate with reasonable precision

(among those not used to determine the parameter values) to those implied by the estimated

distribution. A large difference in the estimated higher-order moments suggests that we find a

different distribution for the first step.

5.2.1 Distributions. We show how to estimate the parameters from five distributions. First, assume

Z ∼ Poisson(λ) and choose which member of the Poisson family best characterizes our confi-

dential data by estimating the first moment as in Equation 11 and setting λ̂ = S
n

∑n
i=1H1(Xi /S ) =

X̄ . This distribution is our histogram estimate. Second, assume Z ∼ N (μ,σ2), and choose the

distribution by setting μ̂ = S
n

∑n
i=1H1(Xi /S ) and σ̂2 = −μ̂1 − μ ′

2. Details for the remaining three

distributions, zero-inflated Poisson, Negative Binomial, and zero-inflated Negative Binomial, are

given in Appendix D

5.2.2 Diagnostic Checks. Wenow introduce a diagnostic check for a distributional assumption by eval-

uating the observable implications in the form of higher-order moments not used in estimating

whichmemberof the classof distributions fits best andwhichareestimablewithenoughprecision

to be useful.

For illustration, let the confidential data be Zi ∼ ZINB(0.4,0.2,20) and the privatized (differ-

entially private) data Xi ∼ N (Zi ,S
2), with S = 3.12, which is also the standard deviation of Z—

meaning that we are adding as much noise to the data as there is signal. Next, estimate each of

the first six moments of confidential data directly (i.e., using the methods in Section 5.1) and also

given the distributional assumptions. Table 2 reports ratios of thesemoments (directly estimated

divided by the distributional estimate), for three distributional assumptions. The ratios in red are

fixed to 1.00 using the direct estimates to determine themember of the class of distributions. The

other ratios deviate from 1 as the two estimators diverge. The columns are the moments. The last
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Table 2. Diagnosing parametric fit. Each table entry is the ratio of the direct to the parametrically estimated
moment, with ratios to fixed to be equal in bold. The last row is the directly estimatedmoment divided by its
standard error.

µ′
1

µ′
2

µ′
3

µ′
4

µ′5 µ′
6

Poisson 1.00 1.55 2.34 3.42 4.92 6.88

NegBin 1.00 1.00 0.82 0.58 0.36 0.21

Normal 1.00 1.00 1.20 1.24 1.37 1.41

ZINB 1.00 1.00 1.00 1.01 1.01 1.00

t-statistic 96,870 88.9 50.98 29.07 16.65 9.62

row,marked “t-statistic” is ameasure of the uncertainty of the observable implication—the direct
estimate divided by its standard error (as derived in Appendix C). We included only the first six

moments because t-statistics for others suggested little information would be gained.
The first row of Table 2 assumes a Poisson distribution, and estimates its parameter by setting

λ = μ̂ ′
1. This means that moments 2, . . . ,6 are observable implications unconstrained by the

distributional assumptions. Unfortunately, all of these other moments are far from 1, indicating

that the Poisson distribution does not fit the confidential data.

Poisson distributions, which can be thought of as analogous to a normal distribution with the

variance set to an arbitrary value, often do not fit because of overdispersion (King 1989; King and

Signorino 1996). Soweuse the negative binomial distribution,which adds a dispersion parameter.

The second line Table 2with these results shows that the higher-levelmoments still do not fit well.

Given that the sample space of Z includes only non-negative integers, a normal distribution
would not ordinarily be a first choice. However, as a test of our methodology, we make this

assumption and present results in the third row of the table. As expected, it also does not fit well

and so we are able to reject this assumption too.

Finally, we test the zero-inflated negative binomial (ZINB), which allows for both overdisper-

sion, like the negative binomial, and excess zeros, as is common in count datasets. Fitting this

distribution uses estimates of the first three moments, the ratios of which are set to 1.00 in the

table. As we can see by the fourth, fifth, and sixth moments, this assumption fits the data well, as

the ratios are all approximately 1.00.

We conclude that ZINB is an appropriate assumption for summarizing the distribution of Z. We
plot someof these results in Figure 4. The right panel plots the true distribution of the confidential

data, our quantity of interest. The left panel gives the distribution of the private data in blue. This

histogram differs considerably from the true distribution and, like the noise, appears normal. In

contrast, we now see that the estimated distribution (in orange) is a good approximation for the

true distribution in the right panel.

5.3 Regression Diagnostics
We now provide methods for detecting non-normal disturbances and heteroskedasticity.

5.3.1 Non-Normal Disturbances. We show here how to diagnose non-normal regression disturbances

in confidential data. Non-normal distributions do not violate the assumptions of the classical

regressionmodelwe estimate in Section 3, but theymaywell indicate important substantive clues

about the variables we are studying, change our understanding of prediction intervals, or indicate

the need for more data to achieve asymptotic normality of coefficient estimates.

Thus, instead of observing {y ,Z }, we observe {w ,X } through a differentially private

mechanism where X ∼ N (Z ,S2
x ) and w ∼ N (y ,S2

y ). Denote the true regression disturbances as

ε = y − Z β . Then, using the observable variables, define u = w − Xβ , which we estimate by
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Figure 4. Estimated histograms of confidential data.
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Figure 5. Histograms of observed residuals from confidential data with normal noise (in orange) and of the
true residuals from the confidential data (in blue).

substitutingour consistent estimate β̃ forβ . Sincenormal error is added towandX independently,
u ∼ N (ε,S2

y +β ′S2
x β ). We then estimate the moments of ε by direct extension of Section 5.1 and

parallel the diagnostic procedure in Section 5.2 to compare the estimatedmoments to those from

the closest normal.

We illustrate this approach with a simple simulated example. Let Z ∼ N (10,62),X ∼ N (Z ,32),

and y = 10 + 3Z + ε, where ε violates normality by being drawn from a mixture of two equally

weighted independent normals, with zero means but variances 1 and 36. Finally, we add differ-

entially private noise to the outcome variable by drawing w ∼ N (Y ,62). Figure 5 compares the

distribution of the uncorrected observed errors uwith the distribution of the true disturbances, ε.

Although the distributions of the true errors (in blue) sharply deviate from the observed normal

errors (in orange), we would not know this by from the observed residuals. Fortunately, because

we are aware that direct observation of noisy data is often misleading, we know to turn to

estimation of the moments of ε as described above. Thus, to detect non-normality, we use the

standardized higher moments which are the same for all normal densities. As the first row of
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Table 3. Estimating regression disturbance non-normality.

Moment Skewness Kurtosis

All Normals 0.00 3.00

True DGP 0.00 5.69

Observed −0.01 3.08

Estimated −0.09 5.93

Table 3 shows, all normaldistributionshave skewnessof zeroandkurtosis of three. In contrast, our

data generation process, althoughnot skewed, ismore highly peaked than anormal (as confirmed

in the second row of the table). If we ignore the noise, which is itself normal, wewould bemislead

into seeingnear-normal skewness andkurtosis (see the third row). In contrast,we returnestimates

(as reported in the final row) that are close to the true data generation process (in the second row).

5.3.2 Heteroskedasticity. Heteroskedasticity is usually taught as a violation of the classical regression

model, causing inefficiency and incorrect standard errors, although these problems are less of

a concern with immense datasets. A more important reason to search for heteroskedasticity is

substantive. Social sciencehypotheses often concernmeans, but important substantive issues are

related to variances. For example, in the URLs data, scholars may be interested in which regions

of the world share false news more frequently or in which regions the variance in the frequency

of sharing false news is higher or lower. Whereas a region that shares false news consistently may

result fromadependence on the sameunreliable news outlet, a regionwith a high variancewould

be prone to viral events.

Thus, we now generalize the classical regression modelY = Z ′β + ε with E (ε) = 0 by letting

V (ε) = Z ′γ. If we could observe the confidential data, we could regress ε2 on Z, estimating the
variance function as a conditional expectationE (ε2 |Z ) =V (ε |Z ) = Z γ, where γ indicates how the

variance of ε varies linearly in Z (Zmay be multivariate). We now derive a consistent estimator of
γ using the confidential data, which will enable a test of heteroskedasticity under the assumption

of this functional form for the variance.

Let u = Y − X ′β . Then, over draws of the noise, E [u2] = [Y −Z ′β ]2 + β ′S2β + S2
y = ε2 +

β ′S2β + S2
y , which suggests a plug-in estimator for ε

2: ε̂2 = u − β̃ ′S2β̃ − S2
y . However, even with

this correction, the regression of ε̂2 on X gives biased estimates of γ, since X is a noise-induced
proxy for Z. Thus, we use Cov(ε̂2,X |Z ) = 0; that is, a mean zero normal is uncorrelated with its

square. Since our dependent variable, ε̂2, and our explanatory variable, X, are measured with
mean 0 randomerror and uncorrelated, we can use our bias corrected estimator β̃ . Our procedure

then (a) computes ε̂2, (b) estimates γ from the naive regression of ε̂2 on X, and (c) applies our bias
correction procedure.

6 Concluding Remarks

Differential privacy has the potential to vastly increase access to data from companies, gov-

ernments, and others by academics seeking to create social good. Data providers can share

differentially private data without any meaningful risk of privacy violations, and can quantify the

extent of privacy protections. Thismay solve aspects of the political problemof data sharing tech-

nologically. However, providing access todatadoes little if scholars produce resultswith statistical

bias or incorrect uncertainty estimates, if the difficulty of analyzing the data appropriately causes

researchers to not analyze the data at all.

Our goal has been to address theseproblemsbyoffering anapproach to analyzingdifferentially

private data with statistically consistent and approximately unbiased estimates and standard
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errors. We develop these methods for the most commonly used statistical model in the social

sciences, linear regression, and in a way that enables scholars to think about results just as they

think about running linear regression analyses on public data. Point and uncertainty estimates

are interpreted in the same way. We also quantify the privacy information loss by equating it to

the familiar framework of obtaining a sample from the original (confidential) data rather than all

of it, and introduce a variety of diagnostics anddescriptive statistics thatmaybeuseful in practice.

We consider two directions that would be valuable for future research. First, linear regression

obviously has substantial advantages in terms of computational efficiency. It is also helpful

because linear regression estimates give the best linear approximation to any functional form,

regardless of the functional form or distribution from the data generation process. However,

scholars have gotten much value out of a vast array of other approaches in analyzing noncon-

fidential data, and so extending our approach to these other statistical methods or ideally a

generic approach would be well worth pursuing, if indeed, they turn out to make it possible

to unearth information not available via a linear approach. Finally, although censoring was not

used in the Facebook URLs data, it is sometimes used to reduce the amount of noise added

and so requires more substantial corrections (Evans et al. 2020). Building methods that correct
differentially private data analyses for censoring would also be an important contribution.

Appendix A. Covariance Derivations

We now derive the covariances and estimators for the three types of elements of the variance

matrix in Equation 8. First, we have

Cov(X ′
k Xj ,X

′
�Xm ) = Cov[(Zk +νk )

′(Zj +νj ), (Zm +νm )
′(Z� +ν� )]

= Z ′
k Z� S

2
j m +Z ′

k ZmS
2
j l +Z ′

j Z� S
2
km +Z ′

j ZmS
2
k � +n

[
S2
k � S

2
j m + S2

kmS
2
j �

]
and the consistent estimator:

Ĉov(X ′
k Xj ,X

′
�Xm ) =

(
Ω̂k � S

2
j m + Ω̂kmS

2
j l + Ω̂j � S

2
km + Ω̂jmS

2
k � + S2

k � S
2
j m + S2

kmS
2
j �

)
· n (13)

Next, we have

Cov(X ′
k y ,X

′
j y ) = Cov[(Zk +νk )

′(Z β +ε), (Zj +νj )
′(Z β +ε)]

= σ2Z ′
k Zj + S2

k j

(
(Z β )′(Z β )+nσ2

)
for which we use this consistent estimator:

Ĉov(X ′
k y ,X

′
j y ) = nσ̂2Ω̂k j + S2

k j (y
′y ). (14)

And finally, we compute

Cov(X ′
k y ,X

′
j Xm ) = Cov

[
(Zk +νk )

′((Z β )+ε), (Zj +νj )
′(Zm +νm )

]
= S2

kmZ
′
j (Z β )+ S2

k j Z
′
m (Z β ),

because ε is independent of all other quantities, and Z ′
k (Z β ) and Z ′

j Zm are constants. Given that
E (y ) = Z β and E (Xk ) = Zk , we use the consistent estimator

Ĉov(X ′
k y ,X

′
j Xm ) = S2

kmX
′
j y + S2

k j X
′
my . (15)

We then use Equations 13–15 to fill in Equation 8.
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Appendix B. Interactions

Beginning with definitions from Section 3.2, we redefine the unobserved true covariates as Z =

(1,Z1,Z2,Z3,Z1 · Z2)′, where the interaction (Z1 · Z2) is an n × 1 vector with elements {Z1i Z2i }.

We then observeXj = Zj +νj for j = 1,2,3 anddefineX = (1,X1,X2,X3,X1 ·X2)′. (The variablesX3

andZ3 caneach refer to a vector of anynumberof covariatesnotpart of the interaction.) Asbefore,

plim(X ′Z /n) = plim(Z ′Z /n) = Ω , which is now a 5× 5matrix, the upper left 4× 4 submatrix of

which, with x = (1,X1,X2,X3), is defined as before: (x ′x/n)− S2. We now derive the final column

(and, equivalently, row)ofΩ , theelementsofwhichwewriteas (Ω012,Ω121,Ω122,Ω123,Ω1212),with

subscripts indicating variables to be included (0 referring to the intercept).

We then give asymptotically unbiased estimators for each:

Ω̂012 =
1′(X1 ·X2)

n
, Ω̂121 =

(X1 ·X2)′X1

n
− S2

1 X̄2, Ω̂122 =
(X1 ·X2)′X2

n
− S2

2 X̄1

Ω̂123 =
(X1 ·X2)′X3

n
, Ω̂1212 =

(X1 ·X2)′(X1 ·X2)

n
−

(
S1S

2
2 + S2

2 μ̂
2
1 + S2

1 μ̂
2
2

)
.

For example, to derive an estimator for Ω̂121, write

X ′
1(X1X2) = (Z1 +V1)

′ [(Z1 +V1)(Z2 +V2)]

= Z ′
1 [Z1Z2 +V1V2 +Z1V2 +Z2V1] +V

′
1 [Z1Z2 +V1V2 +Z1V2 +Z2V1] .

We then take the expectation, E [(X1X2)′X1] = Z ′
1(Z1Z2)+ S2

1

∑
i Z2i , and take the limit

lim
n→∞

E

[
(X1X2)′X1

n

]
=Ω121 + S2

1μZ2 ,

where plim(Z̄2) = μZ2 . Finally, we solve forΩ121, replacing the expected value with the observed

value (X1X2)′X1 leaving Ω̂121.

Appendix C. Variance of RawMoment Estimates

To derive the variance of μ̂ ′
r , write:

V (μ̂ ′
r ) =V

(
Sr

n

∑
i

Hr (Xi /S )

)
=

(
S2r

n2

) ∑
i

V (Hr (Xi /S ))

approximateV (Hr (Xi /S )) by thedeltamethod,V (Hr (Xi /S ))≈V (Xi /S ) (H ′
r (Xi /S ))

2 = (H ′
r (Xi /S ))

2,

and use a result from Abramowitz and Stegun (1964), that d
dx Hr (x ) = 2r Hr−1(x ), to derive our

variance estimate: V̂ (μ ′
r ) =

(
4r 2S2r

n2

) ∑
i (Hr−1(Xi /S ))

2.

Appendix D. Parametric Histogram Estimation

The first two distributions are provided in Section 5.2. The third is an empirically common

generalization of the Poisson distribution that accounts for the possibility of excess zeros is the

zero-inflated Poisson (ZIP) distribution, defined on the non-negative integers:

Pr(Zi = z |π,λ) =
⎧⎪⎨⎪⎩π + (1−π)exp(−λ) for z = 0,

(1−π)λ
z exp(−λ)

z ! for z ≥ 1.
(16)
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In this case, we have two unknownparameters, {π,λ}, whichwewrite as a function of the first two

moments, with estimators from Section 5.1, and then solve for the unknowns: π̂ = 1−
(μ̂′1)

2

μ̂′2−μ̂
′
1
and

λ̂ =
μ̂′2−μ̂

′
1

μ̂′1
.

Fourth, a second type of empirically common generalization of the Poisson is the Negative

Binomial, which allows for overdispersion (a variance greater than the mean): Pr(Zi = z ) =(z+r−1
z

)
(1− p)r pz for nonnegative integers z. To construct estimators for {p, r }, write the first two

(central) moments as μ1 =
pr
1−p and μ2 =

pr

(1−p)2
. We then solve for the two unknowns {p, r } and use

plug-ins: p̂ = 1− μ̂1
μ̂2
,r̂ =

−μ̂21
μ̂1−μ̂2

.

Finally, we introduce the zero-inflated negative binomial (ZINB) which combines a count distri-

bution overdispersion and with excess zeros. Let

Pr(Zi = z |π, r ,p) =
⎧⎪⎨⎪⎩π + (1−π)

(r−1
z

)
(1−p)r for z = 0,

(1−π)
(z+r−1

z

)
(1−p)r pz for z ≥ 1,

(17)

whereπ is the zero inflationparameter andE [Zi ] =
p ·r
1−p . We thenneed to estimate theparameters

{π, r ,p} using only the observed X. First note that themoment-generating function of the negative
binomial is

(
1−p
1−pet

)
, fromwhichwe can derive anymoments. We then solve for the ZINBmoments

as a weighted sum of the moments of the zero inflated and negative binomial components,

respectively, with the former set equal to 0:

μ ′
1 = (1−π)

r p

1−p
, μ ′

2 = (1−π)
r p(1+ r p)

(1−p)2
, μ ′

3 = (1−π)
r p(1+ (1+3r )p + r 2p2)

(1−p)3
.

Finally, we obtain our estimator of {p, r ,π} by substituting {μ̂ ′
1, μ̂

′
2, μ̂

′
3} for {μ

′
1,μ

′
2,μ

′
3} and solving

this system of equations to produce {p̂, r̂ , π̂}:

π̂ =
(μ̂ ′

1)
2μ̂ ′

2 + μ̂ ′
1(μ̂

′
2 + μ̂ ′

3)−2(μ̂ ′
2)
2− (μ̂ ′

1)
3

μ̂ ′
1(μ̂

′
2 + μ̂ ′

3)−2(μ̂ ′
2)
2

, p̂ =
μ̂ ′
1(μ̂

′
2− μ̂3)+ (μ̂ ′

2)
2− (μ̂ ′

1)
2

(μ̂ ′
2)
2− μ̂ ′

1μ̂
′
3

r̂ =
2μ̂ ′2

2 − μ̂ ′
1(μ̂

′
2 + μ̂ ′

3)

(μ̂ ′
1)
2 + μ̂ ′

1(μ̂
′
3− μ̂ ′

2)− (μ̂
′
2)
2
.

An estimate of the histogram of Z is available by merely plugging the estimated parameters
into the ZINB. We can also report some directly meaningful numerical quantities, such as the the

overdispersion of the negative binomial component, 1/r̂ and the estimatedproportion of 0s in the

data, π̂0 = π̂ + (1− π̂)
(r̂−1
1

)
(1− p̂)r̂ .
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