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In this article, we show that de Marchi, Gelpi, and Grynaviski’s substantive analyses are fully consistent
with our prior theoretical conjecture about international conflict. We note that they also agree with our
main methodological point that out-of-sample forecasting performance should be a primary standard

used to evaluate international conflict studies. However, we demonstrate that all other methodological
conclusions drawn by de Marchi, Gelpi, and Gryanaviski are false. For example, by using the same
evaluative criterion for both models, it is easy to see that their claim that properly specified logit models
outperform neural network models is incorrect. Finally, we show that flexible neural network models are
able to identify important empirical relationships between democracy and conflict that the logit model
excludes a priori; this should not be surprising since the logit model is merely a limiting special case of
the neural network model.

We thank Scott de Marchi, Christopher Gelpi,
and JeffreyGrynaviski (2004; hereafter dGG)
for their careful attention to our work (Beck,

King, and Zeng 2000; hereafter BKZ) and for raising
some important methodological issues that we agree
deserve readers’ attention. We are pleased that dGG’s
analyses are consistent with the theoretical conjecture
about international conflict put forward inBKZ—“The
causes of conflict, theorized to be important but often
found to be small or ephemeral, are indeed tiny for
the vast majority of dyads, but they are large, stable,
and replicable whenever the ex ante probability of con-
flict is large” (21)—and that dGG agree with our main
methodological point, that out-of-sample forecasting
performance should always be one of the standards
used to judge studies of international conflict and, in-
deed, most other areas of political science.
However, dGG frequently err when they draw

methodological conclusions. Their central claim in-
volves the superiority of logit over neural network
models for international conflict data, as judged by
forecasting performance and other properties such
as ease of use and interpretation (“neural networks
hold few unambiguous advantages . . . and carry sig-
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nificant costs” relative to logit [dGG, p. 378]). We show
here that this claim, which would be regarded as stun-
ning in any of the diverse fields in which both meth-
ods are more commonly used, is false. We also show
that dGG’s methodological errors and the restrictive
model they favor cause them to miss and mischaracter-
ize crucial patterns in the causes of international con-
flict.
We begin in the next section by summarizing the

growing support for our conjecture about international
conflict. The subsequent section discusses the theoret-
ical reasons why neural networks dominate logistic re-
gression, correcting a number of methodological er-
rors. The next section demonstrates empirically, with
the same data as used in BKZ and dGG, that neural
networks substantially outperform dGG’s logit model.
We show that neural networks improve on the forecasts
from logit as much as logit improves on a model with
no theoretical variables.We also show how dGG’s logit
analysis assumed, rather than estimated, the answer to
the central question about the literature’s most impor-
tant finding, the effect of democracy on war. Because
this andother substantive assumptions underlying their
logit model are wrong, their substantive conclusion
about the democratic peace is also wrong. The neu-
ral network models we used in BKZ not only avoid
these difficulties, but they, or one of the other methods
available that do not make highly restrictive assump-
tions about the exact functional form, are just what is
called for to study the observable implications of our
conjecture.

SUPPORT FOR BKZ’S CONJECTURE
ABOUT INTERNATIONAL CONFLICT

The explanation of what drives international conflict
put forward in BKZ (22) was built on a simple conjec-
ture, that “the effects of most explanatory variables are
undetectably small for the vast majority of dyads, but
they are large, stable, and replicable when the ex ante
probability of conflict is large.” That is, our point is that
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theories of international conflict that have a one-size-
fits-all approach to regions and time periods should be
replacedwith theories that reflect the highly contingent
and context-dependent nature of the phenomenon.We
showed that this simple idea accounts for many specific
observable implications consistent with the evidence.
For example, if our conjecture is correct, then statisti-
cal analyses using methods that specify nearly identical
effects for all observations, such as the logitmodels that
had previously dominated the literature, should reveal
apparently small to nonexistent effects or effects that
vary across specifications. Such is indeed the case in
most of the literature. Second, when the effects in the
subset of high ex ante probability of war dyads are suffi-
ciently large, these effects would be robust across speci-
fications, evenusing logit. This is indeed the case for rel-
atively atheoretical but powerful variables such as time
since the last war and contiguity. Third, our conjecture
implies that small changes in the sets of dyads included
in an analysis would lead to disproportionate effects on
the results, which would appear to account for much of
the instability of results across articles in the literature.
Fourth, when combined with the strong priors that ex-
ist among scholars in international conflict studies, our
conjecture would lead us to expect to see results that
vary considerably from researcher to researcher, which
is precisely what we see. Fifth, data subsetting practices
in the literature, such as limiting analyses to politically
relevant dyads, would be expected to generate selec-
tion effects that strengthen results compared to the full
data set, but the results would still not be as large as
plausibility checks or qualitative researchers suggest.
All these implications are consistent with evidence in
the literature.
Our conjecture is also strongly supported by the neu-

ral network analyses in BKZ, which estimated and re-
vealed the nonlinearities and massive interactions di-
rectly, and by the new analyses in Lagazio and Russett
(2002). dGG’s model also unambiguously reveals their
estimated relationships to be much flatter or nonexis-
tent among the low ex ante probability of war dyads,
just as our approach predicts. Of course, logistic re-
gression is a much more limited procedure in terms of
the types of empirical results that are possible for it to
produce. In fact, the effect of an explanatory variable
in the usual logit model, measured in terms of a small
change in an explanatory variable on the probability of
war (i.e., a derivative), is restricted to be between only
zero and one-quarter of the respective coefficient, at a
maximum, andmuch narrower for low-probability rare
events; these probabilities will also vary inflexibly, and
very little as thedata change, fromdyad todyad.Hence,
some of the results consistent with our conjecture were
effectively assumed by dGGas part of their logit model
specification, rather than estimated; these parts imply
dGG’s implicit theoretical agreement with our conjec-
ture, hard coded in their choice of specification, rather
than direct empirical support. The nonlinear portions
of dGG’s specification means that the derivative of the
probability of war with respect to democracy can vary
a good deal more than their other variables, and so
provide a somewhat better test of our conjecture, al-

though still limited in terms of the types of results it can
model.

WHY NEURAL NETWORKS DOMINATE
LOGIT: THEORY

In this section, we provide the theoretical reasons why
neural networks dominate logit models for the analysis
of international conflict data1 and correct a variety of
methodological errors in dGG. We show that neural
networks do not make “the interpretation of predic-
tors extraordinarily difficult” as dGG claim, they do
not produce “inefficient estimates,” and they generate
no extra “uncertainty about causal relationships”; and
their claims that neural networks “preclude hypothesis
testing” and that “it is not possible to determine the
sensitivity of findings to changes in other variables”
and “impossible to test hypotheses about the magni-
tude and direction of a predictor’s influence on the
dependent variable” are also false. Neural networks in
fact are quite standard statistical models requiring no
new “epistemology” or theory of inference. We now
clarify these and several other points.

Epistemology and Interpretability

dGG claim that neural networks “embody a different
epistemological perspective” from logistic regression.
This claim is false. Neural network models may have a
strangename, but theyembodynomystery and, as com-
monly used, are no harder to interpret than logit mod-
els.AsBKZdemonstrate, neural networks areordinary
statistical models, just like logit or linear regression.
They work completely within the standard Bayesian or
likelihood theories of inference, just like logit.
To see these points, letYi be 1 if dyad i is at war and 0

if it is at peace, and denote Xi a set of explanatory vari-
ables. Then, as we describe in BKZ, a linear regression
(or “linear probability”) model can be written

Pr(Yi = 1) = linear(Xi ),

where linear (Xi ) = Xiβ, and a logit model can be
written

Pr(Yi = 1) = logit(linear(Xi )),

where logit(a) = 1/(1+ e−a). The extra logit function
makes logistic regression parameters harder to in-
terpret, and indeed the vast majority of published
articles in political science do not interpret the param-
eters of logit models directly. Most political scientists
instead choose to compute predicted values, first differ-
ences, and other quantities of interest (King, Tomz, and
Wittenberg 2000). Neural network models are simple
generalizations, which can be written

Pr(Yi = 1) = logit(linear(logit(linear(Xi )))). (1)

1 We could also show why neural networks also dominate discrimi-
nant analysis, but because the latter is not commonly used in political
science, dGG focus on logit, and there exist many good reasons to
prefer logit to discriminant analysis, we consider only dGG’s logit
here.
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Just as with logit models, political scientists who use
neural network models do not interpret their coeffi-
cients directly and instead report predicted values, first
differences, or other quantities of interest (Andreou
and Zombanakis 2001; Bearce 2000; Beck, King, and
Zeng 2000; Borisyuk et al. 2001; King and Zeng 2002;
Lagazio and Russet 2002; Zeng 1999, 2000). We see no
reason to think that a predicted probability of war is
any harder to interpret, no matter how it is calculated.
Neural networks are certainly less familiar to political
scientists, but in our view the enormously important
public policy issues at stake mean that the improved
forecasting performance that comes from using these
techniques thatwedemonstrate inBKZand the reanal-
ysis below should outweigh any inconvenience some
researchers may have in learning new methods.
dGG are incorrect that one cannot compute uncer-

tainty measures such as standard errors, confidence in-
tervals, or hypothesis tests about quantities of interest
in neural network models. The marginal effect plots
in BKZ report error bars from a neural network anal-
ysis, which portray confidence intervals, and one can
use standard Bayesian or frequentist theory to com-
pute these for any quantity in the same manner as
one computes it for logit. Of course, in any statistical
model, hypothesis tests should not focus on arbitrarily
parameterized coefficients but, rather, should be about
quantities of real substantive interest to researchers.2

Model Flexibility

Although it has a parametric form that is almost as
straightforward as logit, neural network models do
have advantages over logit. They, but not logit mod-
els, have “arbitrary approximation capabilities” (White
1992). This means that at least one member of the
neural network family of models (or a neural network
model with a sufficient number of hidden neurons) can
approximate any functional formsuggestedby thedata,
even if not specified by one’s theory ex ante. This is a
tremendous advantage, as it enables one to estimate
relationships not known from prior theory. What logit
models do in contrast is to make assumptions, some
based on theory and some based on convenience, all
of which require one to ignore empirical evidence. In
contrast, neural network modeling is a more power-
ful information extraction tool. In fact, neural network
models include logit models as limiting special cases,
and so a proper use of neural network models should
always outperform logit, at least in expectation (Hastie,
Tibshirani, and Friedman 2001). Indeed, if the logit
specification is correct, a competent neural network
modeler should find that something arbitrarily close to
the logit is the preferred specification. Moreover, both
logitmodels andneural networkmodels canbeused for

2 For our models reported in the text, we compute probabilities, as
the building blocks for our quantities of interest, by integrating over
the posterior distribution of the parameters. This incorporates all
information on uncertainty in our final estimates, rendering signfi-
cance tests irrelevant and, for rare events data like wars, reducing
mean square error (King and Zeng 2001).

testing any relevant hypothesis; the only difference is
that under logit the validity of these tests is conditional
on a variety of more stringent assumptions.
The logit specification includes a whole range of re-

strictive assumptions that no prior theory or data in in-
ternational conflict supports and nomethod other than
those with flexible functional forms like neural net-
works is capable of testing. For example, the only func-
tional forms to have been derived from formal theories
of international conflict are massively violated by the
restrictions of logit models, especially that logit proba-
bilities are usually monotonic functions of the explana-
tory variables (Signorino 1999). Moreover, Signorino
and Yilmaz (2003) prove that if even the simplest form
of strategic interaction exists among the dyads, then the
restrictions inherent in logit models make its estimates
“biased and inconsistent.” In contrast, neural network
models can approximate and thus test models derived
from strategic theory to any degree of precision. Thus,
instead of using a statistical model with arbitrary re-
strictions, incapable of finding, testing, or confirming
patterns indicated by theory, our general approach is to
follow when feasible the simple maxim from King and
Zeng (2002): “When we know something, we assume
it; when we don’t know, we estimate it.”
The flexibility of neural networks contrasts vividly

with the rigidity of a standard logit specification, which
uses the same effect parameter when predicting the
probability of war between Burkina Faso (one of the
poorest countries in the world, located in western
Africa) and St. Lucia (a small Caribbean island tourist
destination) as it does for the probability of war be-
tween the United States and North Korea. (That is, the
estimated β coefficient relating the change in the ex-
planatory variables to the conflict outcome is the same
for both dyads.) This strikes us as incorrect, if not ab-
surd, but it is precisely the kind of assumption made
by the vast majority of the scholarly literature prior to
BKZ. It is also the assumptionmade by dGG’s logit re-
gressions. Given this point and the observable implica-
tions of our conjecture to the contrary offered in BKZ,
we would expect to see effects that are highly variable
across the dyads, with massive interaction effects and
nonlinearities that could only partially be picked up by
techniques like logistic regression.
dGG worry that neural network models “increase

the size of the parameter space almost 30-fold.” This
is misleading. Neural networks typically have more pa-
rameters than logit models, but Bayesian regulariza-
tion reduces this nominal number of parameters to an
“effective number of parameters” that is usually much
smaller (Bishop 1995, 377, 410). Of course, the number
of parameters per se is not the right criterion by which
to judge a model, for the complexity of a model should
match that of the data. A model too simple to extract
information from the data would be simply wrong and
useless. Overfitting—modeling the idiosyncratic fea-
tures of data rather than the systematic features that
will persist—cannot be ascertained by naive parameter
counts but rather requires understanding the demands
being put on the data by the complete estimation pro-
cedure. Even the user’s manual for the software dGG
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use warns against naive parameter counting like this
(Demuth and Beale 2002, 5–54). By the appropriate
use of Bayesian prior densities—and most importantly
the use of test sets during the training stage rather than
merely in-sample t-tests—neural network models en-
able researchers to estimate relationships rather than
assume them, and at the same time they can help avoid
overfitting and the resultant suboptimal forecasts. A
logitmodelused in the standardway,without test setsor
cross-validation, has little to prevent it fromoverfitting,
even though it is a much less flexible form.
Neural networks also avoid “underfitting,” a key

problem with logit analysis, which makes assumptions
about fundamental substantive relationships that we
know little about. In fields where prior knowledge is
extensive, specific, and highly informative, assumptions
like these may be appropriate. Describing the interna-
tional conflict literature in this way would be a stretch.
dGG’s specification decisions exacerbate this inher-

ent problem with logit analysis, because they appear to
implement a notion of “theory” that does not depend
heavily onprior evidence. ToBKZ’s specification, dGG
“added variables and nonlinear transformations” that
they claim “the literature has established as central to
any model of dispute initiation.” They cite 10 previous
studies in support of this new specification. Whereas
distance between the countries and whether one is a
major power are good additions that we are happy to
add to our model, what dGG do not say is that none
of these prior articles include dGG’s specification of
nonlinear transformations or anything close to it. In
fact, no other published or unpublished work we could
find, whether or not it was cited in dGG, used this spec-
ification. Even the most recent publications (Reuveny
and Li 2003; Russett, Oneal, and Berbaum 2003) and
the most recent working paper by one of the authors
(Gelpi and Grieco 2000) chose more traditional speci-
fications, very much unlike the one in dGG.
Consider democracy, which is the variable that has

received the most attention in the conflict literature
among those considered by dGG. The raw measures
for most specifications begin with the Polity scores for
each country in a dyad, coded −10 (autocracy) to 10
(full democracy). dGG then add 11 to each (changing
the range to 1–21) and include the product of these two
scores and the square of this product. They exclude
the main effects of each, the difference between the
countries, the minimum or maximum of the two, and
the sumof the two, which is equivalent to assuming that
the effects of these variables more common in the lit-
erature are exactly zero (see Oneal and Russett 1997).
These are exceptionally strong theoretical assumptions
about the causes of international conflict hard coded
into their logit model. If the assumptions are incorrect,
then dGG’s logit model will yield incorrect results, as
the model is not flexible enough to adjust. dGG jus-
tify this specification by appeal to “theory” but not one
prior publication in the literature (including those cited
by dGG) has used, examined, or even discussed this
specification.
To be more specific, under the dGG scoring, even

ignoring the quadratic term, the difference between

a dyad with two democracies and a mixed dyad (one
democracy and one autocracy) is 21 times larger than
thedistancebetweenamixeddyadand twoautocracies.
For the squared interaction the same difference is 441
times larger. Because nothing in the logit functional
form could correct for such a difference, and indeed no
theory or empirical analysis in the literature supports
anything like it, this cannot be considered a plausible
specification.Of course, the problem is notmuch better
in the two standard scoring schemes in use in the vari-
ous logit analyses of conflict in the literature. Both the
“minimum democracy score” and the “binary democ-
racy variable” approaches treat the totally autocratic
and mixed dyads as if they were identical. While one
might find some complicated nonlinear transform of
the two democracy measures that works in particular
applications under logit or other nearly linear models,
the only reasonable general approach would use a flex-
ible functional form, such as a neural network.
Although dGG’s specification does not rise to a rea-

sonable notion of prior theory, we have no objection
to it as one possible (reduced form) theory of interna-
tional conflict. Indeed, inspiration for some of the non-
linear terms suggested by dGG could have been coded
directly from the neural network-generated marginal
effect plots in BKZ. Hence, to stack the deck as much
as possible in dGG’s favor, we adopt their specification
for the logit model used for empirical comparisons in
the rest of this article. (In our neural network model,
we follow dGG and include only the basic explana-
tory variables without their hard-coded interactions
and nonlinear terms.)

The Role of Parsimony in Political Science

Although neural networks do not necessarily have a
larger “effective number of parameters” than logit
models, they do have a more complex mathematical
form. This worries dGG, who declare, as a criterion for
comparing approaches, that “models should be parsi-
monious (King, Keohane, and Verba 1994).” We think
that dGG misread King, Keohane, and Verba (1994,
20), who wrote,

The principle of choosing theories that imply a simple
world is a rule that clearly applies in situations where there
is a high degree of certainty that theworld is indeed simple.
Scholars inphysics seemtofindparsimonyappropriate, but
those in biology often think of it as absurd. . . .Webelieve it
is only occasionally appropriate. . . .We should never insist
on parsimony as a general principle of designing theories,
but it is useful in those situations where we have some
knowledge of the simplicity of the world we are studying.
Our point is that we do not advise researchers to seek
parsimony as an essential good, since there seems little
reason to adopt it unless we already know a lot about a
subject.

Thus, one cannot claim that the simplicity of the logit
model is an advantage unless that simplicity is consis-
tent with the data, and no theory or empirical evidence
indicates that it is. (A generation ago methodologists
argued about logit versus a simple linear probability
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model; the argument for the latter, which is no longer
taken seriously in the literature, is akin todGG’s, that is,
that one can easily read off effects in the linear proba-
bility model and that interpretation of logit coefficients
is difficult. That debate is now clearly archaic.)
Instead of using parsimony, King, Keohane, and

Verba (1994) argue that we should choose theories
that “maximize leverage,” by searching for as many
observable implications of a theory as possible and
testing them, regardless of how complicated the the-
ory itself is. As it turns out, the central conjecture of
BKZ is highly parsimonious and maximizes leverage
by producing many observable implications consistent
with it. In general, neural network models tend to be
less parsimonious than logit models, but at least for
international conflict data they maximize leverage by
producing many more observable implications consis-
tent with the data. Moreover, the standard practice of
evaluating models by out-of-sample forecasting tests
ensures that parsimonious models will be chosen only
when the empirical evidence indicates that they should
be chosen.

Out-of-Sample Evaluations

dGG agree with BKZ that using out-of-sample fore-
casting evaluations tomaximize leverage and thus eval-
uate models is critical. However, dGG miss two criti-
cal consequences of this decision. The more important
consequence is that out-of-sample evaluations can be
used to guard automatically against overfitting. The use
of in-sample statistics, such as those used by dGG, en-
courage researchers to “peek” at the data in choosing
a model, generate post hoc explanations for apparent
patterns, and thus fit idiosyncrasies in the data that do
not generalize. This overfitting becomes apparentwhen
researchers use such a model to predict out-of-sample,
a situation where they are vulnerable to being proven
wrong. Thus, if neural networks were overfitting the in-
sample data, this would simply cause them to perform
worse in the out-of-sample forecasting tests that we
and dGG use. If neural networks provide better out-
of-sample forecasts, it cannot be because they overfit
the in-sample data. Thus, while our Bayesian regular-
ization scheme guards against overfitting, the rigorous
evaluation ofmodels via out-of-sample forecasting per-
formance further ensures that models that are overfit
will not be chosen.3
The commitment to out-of-sample validation also

shows that evaluating neural networks is as easy as for
logit models. And whereas some may prefer to live in
a simple world where one only asks if t-ratios exceed
two, the commitment to evaluation by out-of-sample
forecasting shows that such convenience is bought at a
huge cost. To give one simple example of how hypoth-
esis testing can be naive, the squared democracy vari-
able in the dGG logit model has a substantial t-ratio of
about−5.Thusby the conventional in-sample criterion,

3 Out-of-sample forecasting and cross-validation in general are rou-
tinely used techniques in modern statistical modeling. For an early
reference on this topic, see Stone 1974.

we would think that this variable is an important pre-
dictor of peace. However, when we compare the out-
of-sample forecasting performance of the dGG logit
with and that without this variable, we find that fore-
casting performance is slightly improved by excluding
the variable! Hence, the huge t-statistic merely reflects
overfitting, a fact we would not know without out-of-
sample tests. The key point is that significance tests are
conditional on the veracity of the model, whereas out-
of-sample tests are conditional only on the assumption
that the out-of-sample data are generated by the same
process as the in-sample data.
Although dGG tout as one of the advantages of logit

its ability to test statistical significance (p. 372), their
claim is incorrect and this “advantage” is both nonexis-
tent and misleading. It is nonexistent because hypoth-
esis tests on any quantity of interest can be carried
out in neural networks as straightforwardly as in logit,
because neural networks, as we note earlier, work
completely within the standard Bayesian or likelihood
theories of inference.4 It is misleading in that the stan-
dard in-sample “statistical significance”paradigmusing
either model can easily lead to the choice of infe-
rior models, as we have seen from the example of the
squared democracy variable in dGG’s analysis. Thus,
we see little reason in this context to rely on in-sample
significance tests and instead encouragemodel compar-
ison by out-of-sample forecasting performance. And
as BKZ and our reanalysis below illustrate, evaluat-
ing out-of-sample forecasting performance of a model,
whether it is specified as a logit or a neural network,
is equally easy. We now turn to a comparison of the
out-of-sample forecasting properties of dGG’s chosen
logit model with our preferred neural network model.

EMPIRICAL EVIDENCE

In the four parts in this section, we discuss appropriate
data analysis procedures using neural networks, how to
evaluate forecasting performance, empirical compar-
isons of forecasting performance between dGG’s logit
model and our neural network model, and how dGG’s
logit model misrepresents substantive information in
dGG’s data.

Appropriate Data Analysis Procedures

The particular neural networkmodels used in dGG ap-
pear inappropriate to the task. dGG explain that they
chose these models by maximizing “the area under the
ROCcurve in the training set” (p. 376),which in normal

4 Both logit and neural network coefficients can be subject to hy-
pothesis tests, but doing so for logit is easier. However, the ease of
this test comes with a set of assumptions about the nonexistence of
interactions and the veracity of a particular functional form that have
no basis in the theory or evidence given in the international conflict
literature. Moreover, coefficients from neither model are quantities
of interest and so should not be the subject of hypothesis tests. Testing
genuine quantities of interest, such as the probability of conflict or
first differences, is as easy in both methods, assuming of course that
estimation uncertainty has not already been integrated out, which
would make hypothesis tests irrelevant.
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circumstances is almost guaranteed to result in overfit-
ting. dGG also chose not to use the software we used
in BKZ or one of the other sufficiently sophisticated
neural network programs available; their alternative
choice was not well suited to avoiding overfitting, es-
pecially given their model selection criterion.5
dGG did recognize the importance of including

Bayesian regularization (i.e., prior densities). How-
ever, the regularization scheme in their software was
not designed for predicting a dichotomous dependent
variable like war. As the manual for their computer
program (Neural Network Toolbox for Matlab [see
Demuth and Beale 2002, 5–60]) warns, “Bayesian reg-
ularization implemented in the toolbox does not per-
form as well on pattern recognition problems [i.e.,
classification problems, in particular binary dependent
variables] as it does on function approximation [i.e.,
continuous dependent variable] problems.” This is be-
cause, among other things, their program is running
least squares with a dichotomous dependent variable,
as if they were running a regression, rather than us-
ing the correct likelihood for the problem—a practice
political scientists have known was flawed and for the
most part abandoned since the 1970s. This program,
by using a single regularization parameter, also makes
the incorrect assumption that all their parameters have
identical variances in their prior distributions. Bishop
(1995, 340–42) proves that this simplistic assumption
is inconsistent with a model that has appropriate scal-
ing properties. Thus, their choice of software with a
flawed error function and regularization procedure, un-
corrected by true out-of-sample tests, apparently led to
theneural network they choseoverfitting their data and
forecasting suboptimally.
Another problem is that dGGdo not follow the stan-

dard practice of normalizing their data prior to run-
ning their neural network. Normalization is a key part
of preprocessing (to which Bishop 1995, chap. 8, de-
votes an entire chapter) and has long been recognized
as an integral part of neural network modeling. It in-
volves transforming variables to mean zero and unit
standard deviation for estimation; after estimation the
variables are transformed back to the scale of interest.
Normalization thus also scales the parameter values,
which is important for any nonlinear optimization pro-
cedure, and is especially important here as, without it,
theBayesian priors would be scaled incorrectly. (In this
data set, normalization may be critical, as the scales of
the variables in their original units differ by a factor of
more than12,000!)AsHastie,Tibshirani, andFriedman
(2001, 358) explain, normalization “can have a large ef-
fect on the quality of the final solution.” Normalization
is recommended by the user’s guide to dGG’s chosen
software, which even provides commands for doing it
automatically (Demuth and Beale 2002, 5–61).
In our analysis, below, we use the same software rec-

ommended inBKZ,which does not have the shortcom-
ings of the Neural Network Toolbox for Matlab (and,

5 That is, researchers who use test sets properly have much greater
freedom in choosing software. A list of available neural network
software can be found at http://gking.harvard.edu/nn.

unlike Matlab and the Toolbox, also has the advan-
tage of being free and open source). We use the same
variables as in dGG’s neural network models, which
include the basic linear terms of the input variables (ap-
propriately normalized), but, following dGG, exclude
the extra nonlinear transformations and interactions in
dGG’s logit model.
As in dGG’s logit analysis, we evaluate the perfor-

mance of the neural network using two evaluation sets,
one consisting of the last four years of data (1986–89)
and the other a random subset of the pre-1986 data.
As a test of forecasting the future, the post-1985 data
set seems better, but performance in this context de-
pends not only on picking up the underlying structure
in the data, but also on the assumption common to all
methods in this context—that the process generating
the in-sample data is the same as that generating the
out-of-sample data. The problem with the post-1985
test, then, is that it is just one test and what it shows will
differ from other out-of-sample tests. As a test of the
comparative performance of the twomethodswhen the
out-of-sample data are known to be generated by the
same process as the in-sample data, however, the ran-
dom subset is near-optimal. Thus, although we present
all our results for both test sets, it is the random subset
results on which we should focus.
We chose the neural network architecture by using

the in-sample data only (i.e., pre-1986 data minus the
random subset) and avoid overfitting via the appropri-
ate regularization procedures and by the use of test
sets created temporarily from within the training data,
all following the procedures described in BKZ. And
following King and Zeng (2002), we use committee
methods to reduce variance and improveout-of-sample
performance. Finally, as in BKZ, we examine the out-
of-sample evaluation sets once, only after we arrived at
our final model. It is these final results that appear in
this paper.

Evaluative Criteria

BKZ and dGG agree on the necessity of model evalu-
ation via comparing out-of-sample forecasts but differ
on the criteria used to summarize forecasting perfor-
mance. BKZ’s evaluative criterion was the number of
zeros and (mostly) ones correctly predicted in out-of-
sample test sets. Under this criterion, BKZ’s neural
network model outperformed BKZ’s logit model. By
BKZ’s criterion, dGG’s logit model reduces forecast-
ing performance relative to BKZ’s neural network and
logit models, even though dGG’s logit uses additional
explanatory variables.
However, for new analyses, dGG argue that ROC

curves are preferable to the evaluative criterion used
in BKZ, and we are happy to go along. (ROC curves
werefirst introduced inpolitical science researchby two
of us after BKZ was published [King and Zeng 2002];
if we had been aware of them when we wrote BKZ,
we obviously would have used them.) dGG’s method
of summarizing the information in ROC curves, by re-
porting the area under them, is not the only choice
available, but it may be reasonable in this application
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FIGURE 1. Area under ROC Curves for Two Out-of-Sample Evaluation Sets

Note: The logit model was that run by dGG and represents, according to them, the “major findings of the quantitative security studies
literature.” The (atheoretical) baseline model is a logit analysis with only a constant term and a correction for duration dependence. Our
neural network model indicates forecasting performance twice as accurate as dGG’s logit model relative to the baseline.

and so we adopt it here too as the evaluative criterion.
Obviously, a model chosen by optimizing according
to one criterion will not necessarily do well on an-
other, and evaluating it with respect to a criterion it
was not designed to advance would make little sense.
(By analogy, a least-squares estimator minimizes the
sum of squared residuals and would not generally do
well if evaluated by a minimum absolute deviations
criterion.) Thus, whereas we chose a neural network
model in BKZ by optimizing the number of zeros and
(especially) ones correctly predicted, we now choose a
model that optimizes according to ROC areas. For this
paper, we do not estimate neural network models to
satisfy other criteria.6

6 Thus, the main differences in our neural network procedure from
BKZ is using dGG’s “ROCarea” optimization criterion and explana-
tory variables.Theonlyotherdifference is committeemethods,which
are increasingly used in neural network analyses and other areas due
to their variance-reduction properties, whichmake the analysis more
robust. Our conclusions would not change without this refinement
because all members of the committee also outperform logit, but
we recommend committee methods because it is now widely under-
stood that they are normally superior. More specific details about
our analysis are available in the replication data set accompanying
this article. Our results for calibration tests, which are also used in
dGG and BKZ, lead to similar conclusions as for ROC analyses, so
for simplicity we only present the ROC analyses here.

Forecasting Performance Comparison

We now compare three models using dGG’s preferred
criterion. First is dGG’s logit model, which, with their
gracious help, wewere able to replicate exactly. Second
is our neural network model. And, finally, is an “athe-
oretical baseline” model that has only a constant term
anda correction for durationdependence (usingdGG’s
splines based on the “years since the last war” variable)
and merely says “peace persists.” A miminal baseline
model like this is of course a standard procedure used
to facilitate comparison in a variety of fields.7
For each of the two evaluation sets, we calculated

ROC curves (they appear in the Appendix) and then
use dGG’s preferred summary of them, the area under
the ROC curve, for each of the three models. Figure 1
reports these results and conclusively demonstrates
that the neural network model substantially outper-
forms dGG’s logit model. The out-of-sample forecast-
ing performance of themodel that dGGcharacterize as

7 Our use of a baseline model is essentially the same as an economic
forecaster who chooses a persistence model, that is, with a baseline
forecast equal to the value of the variable during the last observed pe-
riod. In contrast, a baseline equal to the global mean alone, or in our
case assuming equal probabilities of war for all dyads, would ignore
enormous time series dependence in the data and would therefore
generate meaningless comparisons.

385



Theory and Evidence in International Conflict May 2004

taking “into account themajor findings of the quantita-
tive security studies literature” (p. 375) is the leftmost
bar in the figure. The height of this bar constitutes, in
dGG’s view, a summary of the sum total of the liter-
ature’s prior knowledge about international conflict;
the fact that dGG went to the extent of writing a
paper to defend an entire “generation of scholarship”
would seem to imply that they judge this performance
to be substantial and substantively important. Some
others will probably disagree (and we are happy to
remain agnostic on this issue). But however one judges
this performance, neural networks give us more than
twice the forecasting accuracy and knowledge about
the world, relative to the baseline, as all this prior
knowledge about international conflict combined,
relative to the same baseline. And this is without
using any of the nonlinear terms used in dGG’s logit
model or adding a single extra datum or variable (and
has no estimation uncertainty as the parameters are
integrated out in the computation). The doubling
of forecasting performance relative to baseline is
approximately the same for the post-1985 test (on the
left) as for the random subset of dyads (on the right).
Figure 1was drawnusing dGG’s choice of a summary

statistic, the ROC area, but to understand the numbers
we need to translate them into units that are substan-
tively meaningful. As is, the numbers are not compa-
rable to numbers computed from other data sets and
are not immediately related to any substantive feature
of the results: We know that bigger is better but do
not know whether the differences in ROC areas in the
figure should be characterized as “large” or “small,”
and perusal of the full ROCs in the Appendix does not
help either. Thus, restating the above more precisely,
one meaningful unit is the distance from the atheo-
retical baseline to dGG’s logit model, which according
to dGG represents everything we know in the field,
as summarized by dGG’s logit. Using this as the unit
of measurement, our neural network model takes us to
more than two units. Thus, themarginal contribution of
our methods—the distance between the performance
ofdGG’s logit andourneural network—is slightlymore
than one unit. To assess whether a marginal improve-
ment of one unit is “large” or “small” is thus equivalent
to assessing whether the distance from the baseline to
dGG’s logit is large or small, as it is also about one unit.
Because the one unit from the baseline to dGG’s logit is
dGG’s summaryof all the empirical knowledge existing
in the field of conflict studies, dGG clearly imply that
one unit is substantial. If this is correct, then our neural
network’s improvement over logit is just as substan-
tial. Others may view the contribution of quantitative
conflict studies as smaller than dGG do, and so should
view the improvement of neural networks over logit
to be concommitantly smaller as well, but even in this
case the improvement is as large as in all prior research
on the subject. We also show in the next section that
this one incremental unit beyond dGG’s logit turns out
to be enormously important from a substantive per-
spective.
Another way to think about this is to consider the

commonly reported proportionate reduction in error

(PRE) statistic; the error in this case is one minus the
ROC area (for comparison, the PRE in linear regres-
sion is R2). For the post-1985 data, thePRE is 11.7% for
logit and 24.0% for the neural network; for the random
subset, the proportionate reduction in error is 16.4%
for logit and 33.6% for the neural network.
Finally, as a robustness check on our results, we ran

4,400additionalneuralnetworkmodelsbasedondiffer-
ent numbers of committee members, methods of com-
mittee decision making, procedures for calculuating
the probability, network architectures, random seeds,
and prior specifications—none of which were tuned
according to the test procedures described in the text.
Although skipping proper model selection rules is not
advisable for purposes of inference or model compari-
son, these runs give a sense of how hard it would be to
find a neural network model that forecasts worse than
dGG’s logit. It would be hard: Of the 4,400 runs, the
logit was outperformed on the random test set (and in-
sample data) by all 4,400 network models and on the
post-1985 test set by 4,151 of the neural networks.8

Substantive Implications

We now demonstrate that the substantive differences
between dGG’s logit specification and our neural net-
work are of the utmost importance to the field. Indeed,
dGG’s logit specification included assumptions that vir-
tually guaranteed that they would draw the wrong con-
clusions about the most important hypothesis in the
literature, the effects of democracy on war, no mat-
ter what the data said. Many scholars have found that
countries are less likely to fight each other if both are
democratic; however, we do not know whether this is
because they are democratic or because they are alike.
In fact, there exists evidence in the literature that a pair
of countries is less likely to fight if they are both autoc-
racies under some circumstances (Peceny, Beer, and
Sanchex-Terry 2002). A plausible alternative theory
we now provide some evidence for is that “likes don’t
fight,” in that dyads with different levels of democracy
are those likely to go to war (Werner 2000). Because
these issues remain highly controversial in the litera-
ture and remain the subject of a considerable research
program, we think that dGG’s specification—which
makes some of these results impossible to obtain—
unwisely substitutes unsupported theory for empirical
analysis.
Figure 2 plots the probability of war as a function

of the [−10, 10] Polity score for the two countries in a
dyad (marked “Dem a” and “Dem b”), holding con-
stant other explanatory variables at values indicating
high ex ante probabilities of conflict (computed from
themedian of theUnited States andChina in their con-
flict years).We do this with a three-dimensional surface

8 We also find, incidentally, that committeemethods at least partially
protect one from bias, in addition to reducing variance. The larger
the committee, the less dependent results are to particular modeling
choices and model selection procedures and the better are the fore-
casts on average. This result is unlikely to have arisen by chance, as it
is consistent with findings from other fields in unrelated applications
(e.g., Stock and Watson 2003).
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FIGURE 2. Surface and Contour Plots for the Probability of War

Note: Surface and contour plots for the probability of war given differing levels of democracy (coded for each country in a dyad as −10
for autocratic to 10 for democratic) and a high ex ante probability of war. The logit model on the right is based on a replication of dGG’s
analysis. The neural network model on the left reveals features mischaracterized by the logit model.

plot (which makes it easy to visualize the relationship)
and a contour plot (which helps provide numerical pre-
cision). The height of the surface is the probability of
war. The contour plot should be thought of as the view
of the surface plot from above, and the numbers reflect
the probability for equal probability contours. For vi-
sual clarity we have not included confidence intervals,
which are of no value for model selection with binary
dependent variables anyway. dGG’s logit model ap-
pears on the right: The dip in the surface at the left,
where Dem a and Dem b are both near 10 (indicating
full democracy), apparently supports the democratic
peace hypothesis.
So far so good, until one realizes that other hypothe-

ses were impossible to uncover with the logit model
dGG specified, no matter how loudly the patterns in
the data screamed. That is, the only results that could
be found by dGG’s specificationwere ones inwhich the
probability of war was specified to be a logistic function
of the product and the squared product of the degree of
democracy of the two countries in each dyad (and other
variables), a specification that mathematically restricts
without theoretical reason the probability of conflict
at (−10, −10) to be similar to that at (−10, 10) and
(10, −10). One way to demonstrate that the data were
indeed screaming to get around this specification is by
running our neural network model, as it encompasses
dGG’s logit model as a limiting special case. Hence,
if the pattern on the right in Figure 2 were correct, the

plots on the left in the figure, calculated from the neural
network model, would display the same pattern. The
differences, however, are massive. In the plot on the
left, the low probability-of-war dyads are not uniquely
clustered in the bottom-left corner where both coun-
tries are democratic. Instead, two clear regions of low
probabilityofwarappear, one reflecting thedemocratic
peace and the other reflecting an autocratic peace. The
ridge in the middle, indicating areas of high war prob-
abilities, fit the “likes don’t fight” hypothesis, as well as
reflecting the well-known result that partial democra-
cies (even if alike) tend to bemore violent. In addition,
the bottom-right corner, which was missed by logit, is
not a minor feature of the data: The gradient from
the top of the ridge to the right corner represents a
remarkable 30 percentage point drop in probability—
from0.65 at the top to 0.35 at the right. This has obvious
and critically important normative implications for the
central hypothesis in the field.
Thus, for substantively oriented scholars of interna-

tional conflict, neural network models are far more ca-
pable than logitmodels of representing the rich array of
theoretical ideas in the literature and enabling scholars
to draw valid empirical conclusions from existing data.

CONCLUDING REMARKS

dGG make three main points. We all clearly agree
with their first point, that almost all researchers in this
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field (and most other fields) should use out-of-sample
forecasts, and tools like ROC and calibration curves,
to evaluate statistical models. This will help end the
practice of specifying models that are nearly invulner-
able to being proven wrong and then drawing strong
substantive conclusions without empirical grounding.
However, dGG’s two other points are incorrect. A

properly specified neural network model clearly out-
performs dGG’s logit model; in fact, a correctly con-
stituted neural network model improves on the dGG
out-of-sample forecast performance to the samedegree
that dGG improves on an atheoretical model that sim-
ply says that peace persists. dGG are also incorrect that
neural network modeling involves some kind of novel
epistemology or is of no interest to the theoretically
minded student of international conflict. As we have
seen, neural networks are interpreted using the same
tools, in the same way as for logit, and both have the
same statistical underpinnings.Neural networkmodels,
but not logit, are capable of fitting models where na-
tions are acting strategically. Indeed, the logit model is
simply a limiting special case of a neural network, and if
the world is such that the simple logit form adequately
represents the data, a correct neural network analysis
will reveal this fact.
Not only does the neural network outperform logit

for the data under consideration, but also we saw in
Figure 2 that the neural network results are of tremen-
dous interest for settling important controversies in the
study of conflict. dGG’s logit model is simply incapable
of returning results consistent with an entire range of
hypotheses in the literature, no matter what the data
indicate. Clearly such a model cannot be used to de-
cide fairly among competing hypotheses. Surely, data
sets will exist where logit performs as well as neural
networks but where neural networks (or other mod-
ern methods that enable one to estimate rather than

FIGURE 3. ROC Curves for the Post-1985 (Left) and Random (Right) Out-of-Sample Test Sets

Note: Each graph contains ROC curves for dGG’s logit, our neural network, and the atheoretical baseline models.

assume the functional form) forecast better; we should
neither fear to use them nor worry that our standard
analytical methods must be discarded before we use
them. Indeed, a whole range of methods has now been
developed that does not require the functional form
assumptions inherent in logit and the other techniques
commonly used in political science. For prediction,
these include neural networks, models of intermediate
flexiblity like generalized additive models (Beck and
Jackman 1998), those that have unique optima such
as support vector machines (Vapnik 1995, 1998), and
other types of models and methods such as boost-
ing, regression and classification trees, kernel methods,
and mixture models (Hastie, Tibshirani, and Friedman
2001). For estimating causal effects, in areas where pre-
and posttreatment controls are clearly distinguishable,
the techniques tend to be matching and related ap-
proaches (King and Zeng 2003). Which of these tech-
niques is appropriate will depend on the application,
but in almost all situations these techniques will dom-
inate those with restrictive functional forms like logit,
except in the presence of theory far more informative
than in most areas of political science.
If our basic conjecture—that the world of interna-

tional conflict combines a small number of dyadswhere
a variable has a large effect with a large number of
dyads where it has essentially no effect—is correct,
then we must turn to appropriately flexible methods
like neural networks that allow for these massive inter-
actions that cannot be specified a priori. For the data
and subjectmatter at hand, themassive interactions are
there and logit is inadequate to deal with them.

APPENDIX: ROC CURVES

Figure 3 presents the three model ROC curves for each eval-
uation set. Clearly the ROC curve for the neural network
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model lies closer to the top right than the corresponding logit
curve almost everywhere, and the gap between the curves is
about as large as that between the baselineROCand the logit
curve.
Figure 1 provides a cleaner summary of the relevant char-

acteristics of these graphs using dGG’s preferred summary
statistic, and the text explains how to understand the impor-
tance of the ROC differences seen here.
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