Statistically Valid Inferences from Privacy Protected Data¹

Gary King²

Institute for Quantitative Social Science Harvard University

Harvard University, Applied Statistics Workshop, 2/5/2020

¹Joint work with Georgina Evans, Margaret Schwenzfeier, Abhradeep Thakurta. ²GaryKing.org/dp

Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice

Solving Political Problems Technologically

Solving Political Problems Technologically

Solving a Political Problem Technologically (via "constitutional design")

· Gary visits Facebook to persuade them to make data available

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?"

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica.

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - · No pre-publication approval (like NO employees ever)
- · We iterate, and I propose a 2-part solution

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - · No pre-publication approval (like NO employees ever)
- · We iterate, and I propose a 2-part solution
 - Outside academics: send proposals, no company veto

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)
- We iterate, and I propose a 2-part solution
 - · Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - · No pre-publication approval (like NO employees ever)
- · We iterate, and I propose a 2-part solution
 - · Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
- Problem solved, without balancing ~> agreements, announcements, funding, 30+ people assigned at Facebook

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)
- We iterate, and I propose a 2-part solution
 - Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
- Problem solved, without balancing → agreements, announcements, funding, 30+ people assigned at Facebook
- Just one issue:

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - · No pre-publication approval (like NO employees ever)
- · We iterate, and I propose a 2-part solution
 - · Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
- Problem solved, without balancing ~> agreements, announcements, funding, 30+ people assigned at Facebook
- Just one issue: Facebook's implementation plan was illegal!

Solving a Political Problem Technologically (via "constitutional design")

- Gary visits Facebook to persuade them to make data available
- In my hotel room packing, email arrives: "Hey what do we do about this?" This was Cambridge Analytica. (The worst timed lobby effort in history!)
- 3 days later: "Could you do a study of the 2016 election?"
- I'd love to, but I need 2 things & you'll only give me 1:
 - Complete access to data, people, etc. (like employees)
 - No pre-publication approval (like NO employees ever)
- We iterate, and I propose a 2-part solution
 - Outside academics: send proposals, no company veto
 - Trusted 3rd party: Commission at Social Science One signs NDAs, agree not to publish from the data, chooses datasets, makes final decisions; can report publicly if Facebook reneges
- Problem solved, without balancing → agreements, announcements, funding, 30+ people assigned at Facebook
- Just one issue: Facebook's implementation plan was illegal!
- New Problem: Sharing data without it leaving Facebook

Solving Political Problems Technologically

Data Sharing Regime \rightsquigarrow Data Access Regime

Solving Another Political Problem Technologically (via CS & Statistics)

• Data Sharing Regime: I give you data (maybe you sign DUA)

Solving Another Political Problem Technologically (via CS & Statistics)

• Data Sharing Regime: I give you data (maybe you sign DUA)

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - · Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - · Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation,

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - · Nor does aggregation, query auditing,

Solving Another Political Problem Technologically (via CS & Statistics)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - · Nor does aggregation, query auditing, data clean rooms,

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements,
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing,
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models,
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - · Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data;

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer,

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method \rightsquigarrow noisy answer, a limited number of times
 - Goal:

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method \sim noisy answer, a limited number of times
 - · Goal: impossible to violate individual privacy

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy (seems to satisfy regulators et al.)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy (seems to satisfy regulators et al.)
 - New Problem:

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy (seems to satisfy regulators et al.)
 - New Problem: Most DP algorithms are statistically invalid!

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy (seems to satisfy regulators et al.)
 - New Problem: Most DP algorithms are statistically invalid!
 - unknown statistical properties (usually biased)

- Data Sharing Regime: I give you data (maybe you sign DUA)
 - · Venerable, but failing
 - Increasing public concern with privacy
 - · Scholars discovered: de-identification doesn't work!
 - Nor does aggregation, query auditing, data clean rooms, legal agreements, restricted viewing, paired programmer models, etc.
 - Trusting researchers fails spectacularly at times (C.A.!)
 - · Even trusting a researcher known to be trustworthy can fail
- Data Access Regime
 - Trusted server holds data; researchers as adversaries, can run any method → noisy answer, a limited number of times
 - Goal: impossible to violate individual privacy; & possible to discover population level patterns
 - ≈ differential privacy (seems to satisfy regulators et al.)
 - New Problem: Most DP algorithms are statistically invalid!
 - unknown statistical properties (usually biased)
 - no uncertainty estimates

Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice

Differential Privacy & Inferential Validity

Differential Privacy & Inferential Validity

Population		
:		
Chris		
Kosuke		
Georgie		
Gary		
Meg		
Abhradeep		
Ryan		
Xiang		
Dustin		
Matt		
\$48		

Quantity of Interest

Differential Privacy & Inferential Validity

Mean income:

Population	Sample		
÷	X		
Chris	1		
Kosuke	✓		
Georgie	\checkmark		
Gary	\checkmark		
Meg	\checkmark		
Abhradeep	\checkmark		
Ryan	\checkmark		
Xiang	\checkmark		
Dustin	\checkmark		
Matt	✓		
\$48			

Quantity of Interest

Differential Privacy & Inferential Validity

Mean

income:

	Population	Sample	\$	
	:	X		
	Chris	\checkmark	76	
	Kosuke	\checkmark	122	
	Georgie	\checkmark	145	
	Gary	\checkmark	96	
	Meg	\checkmark	86	
	Abhradeep	\checkmark	127	
	Ryan	\checkmark	72	
	Xiang	\checkmark	132	
	Dustin	\checkmark	95	
	Matt	\checkmark	134	
Mean income:	\$48 Classi		-\$108	
incomer	Inferen	nce		
	Quantity of Interest		Usually no direct relevance	

Differential Privacy & Inferential Validity

Population	Sample	\$	
:	X		
Chris	\checkmark	76	
Kosuke	\checkmark	122	
Georgie	\checkmark	145	
Gary	\checkmark	96	
Meg	\checkmark	86	
Abhradeep	\checkmark	127	
Ryan	\checkmark	72	
Xiang	\checkmark	132	
Dustin	\checkmark	95	
Matt	\checkmark	134	
\$48 Classie Inferen		-\$108	
Quantity		Usually no direct	
of Interest		relevance	

Differential Privacy & Inferential Validity

Mean income

Population	Sample	\$	+Privacy
:	X		
Chris	\checkmark	76	
Kosuke	\checkmark	122	
Georgie	\checkmark	145	No
Gary	\checkmark	96	ise
Meg	\checkmark	86	Noise & Censoring
Abhradeep	\checkmark	127	Cer
Ryan	\checkmark	72	ISOI
Xiang	\checkmark	132	ring
Dustin	\checkmark	95	99
Matt	\checkmark	134	
\$48 Clas	sical rence	-\$108	
Quantity of Interest		Usually no direct relevance	t

Differential Privacy & Inferential Validity

Mean income

	Population	Sample	\$	+Privacy	=dp\$
	÷	X			
	Chris	\checkmark	76		85
	Kosuke	1	122		103
	Georgie	\checkmark	145	Noise	75
	Gary	\checkmark	96		113
	Meg	1	86	&	125
	Abhradeep	\checkmark	127	Censoring	97
	Ryan	\checkmark	72	ISOF	101
	Xiang	\checkmark	132	ing	128
	Dustin	\checkmark	95	04	83
	Matt	\checkmark	134		201
:	\$48 Classi		-\$108	Query-	- \$111
	Infere	nce	K	Response	
	Quantity of Interest		Usually no direc relevance		No direct relevance

Differential Privacy & Inferential Validity

Mean income:

	Population	Sample	\$	+Privacy	=dp\$
	:	X			
	Chris	\checkmark	76		85
	Kosuke	1	122		103
	Georgie	\checkmark	145	Noise	75
	Gary	\checkmark	96	ise	113
	Meg	1	86	&	125
	Abhradeep	\checkmark	127	Censoring	97
	Ryan	\checkmark	72	ISOF	101
	Xiang	\checkmark	132	ing	128
	Dustin	\checkmark	95	04	83
	Matt	\checkmark	134		201
Mean income:	\$48 Classi		-\$108	Query- Response	- \$111
			K)
ential Privacy &	Statistic	ally Valid Inference	s from Privacy F	Protected Data	

• Estimators

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - Fundamental problems for statistical inference
- The DP Standard

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference
- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

$$\frac{\Pr[M(s,D) = m]}{\Pr[M(s,D') = m]} \in 1 \pm \epsilon$$

for all D, D', m

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference
- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

$$\frac{\Pr[M(s,D) = m]}{\Pr[M(s,D') = m]} \in 1 \pm \epsilon$$

for all D, D', m

Examples all proven to protect the biggest possible outlier

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference
- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

$$\frac{\Pr[M(s,D) = m]}{\Pr[M(s,D') = m]} \in 1 \pm \epsilon$$

for all D, D', m

• Examples all proven to protect the biggest possible outlier

•
$$M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N\left(0, \frac{8\Lambda}{n\epsilon}\right)$$

Differential Privacy & Inferential Validity

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference
- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

$$\frac{\Pr[M(s,D) = m]}{\Pr[M(s,D') = m]} \in 1 \pm \epsilon$$

for all D, D', m

· Examples all proven to protect the biggest possible outlier

•
$$M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N\left(0, \frac{8\Lambda}{n\epsilon}\right)$$

• Or: mess with gradients, $X'_i X_i$, data, QOIs, etc.

Differential Privacy & Inferential Validity

- Estimators
 - Classical Statistics: Apply statistic s to dataset D, s(D)
 - DP Mechanism: *M*(*s*, *D*), with noise & censoring
 - Essential components of ensuring privacy
 - · Fundamental problems for statistical inference
- The DP Standard
 - Including (D) or excluding (D') you doesn't change conclusions

$$\frac{\Pr[M(s,D) = m]}{\Pr[M(s,D') = m]} \in 1 \pm \epsilon$$

for all D, D', m

· Examples all proven to protect the biggest possible outlier

•
$$M(\text{mean}, D) = \frac{1}{n} \sum_{i=1}^{n} c(y_i, \Lambda) + N\left(0, \frac{8\Lambda}{n\epsilon}\right)$$

- Or: mess with gradients, $X'_i X_i$, data, QOIs, etc.
- Statistical properties: usually biased, no uncertainty estimates

Properties of Differential Privacy

Properties of Differential Privacy

• Post-processing: if M(s, D) is DP, so is f[M(s, D)]

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - Can limit maximum risks across analyses & researchers

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - Can limit maximum risks across analyses & researchers
 - When the budget is used, no new analyses can ever be run

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - · Can limit maximum risks across analyses & researchers
 - When the budget is used, no new analyses can ever be run
- Completely changes statistical best practices

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - · Can limit maximum risks across analyses & researchers
 - When the budget is used, no new analyses can ever be run
- · Completely changes statistical best practices
 - · Previously: balance not being fooled by the data and yourself

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - · Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - Can limit maximum risks across analyses & researchers
 - When the budget is used, no new analyses can ever be run
- Completely changes statistical best practices
 - · Previously: balance not being fooled by the data and yourself
 - DP tips the scales: P-hacking avoided almost automatically, exploration and serendipity replaced by careful planning

- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
 - Useful for bias corrections
- - · Some flexibility for real applications
- Privacy Budget
 - Privacy risk quantified (ϵ), instead of 0/1 for re-ID
 - Composition: ϵ_1 -DP and ϵ_2 -DP is $(\epsilon_1 + \epsilon_2)$ -DP
 - Can limit maximum risks across analyses & researchers
 - When the budget is used, no new analyses can ever be run
- Completely changes statistical best practices
 - · Previously: balance not being fooled by the data and yourself
 - DP tips the scales: P-hacking avoided almost automatically, exploration and serendipity replaced by careful planning
 - · Can address with: careful software design & education

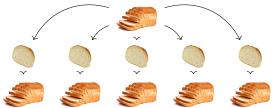
Solving Political Problems Technologically

Differential Privacy & Inferential Validity

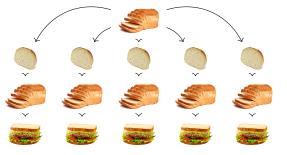
A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice

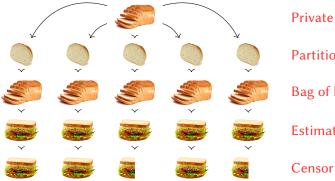
Private data



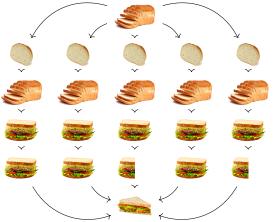
Private data Partition Bag of little bootstraps



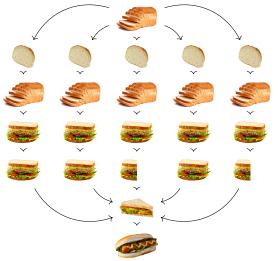
Private data Partition Bag of little bootstraps Estimator



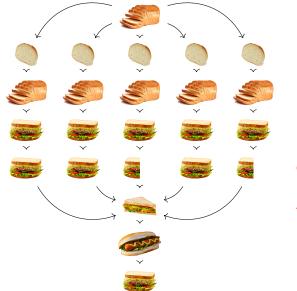
Private data Partition Bag of little bootstraps Estimator



Private data Partition Bag of little bootstraps Estimator Censor Average

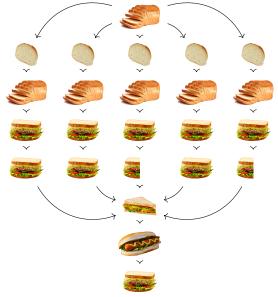


Private data Partition Bag of little bootstraps Estimator Censor Average Noise



Private data Partition Bag of little bootstraps Estimator Censor Average Noise

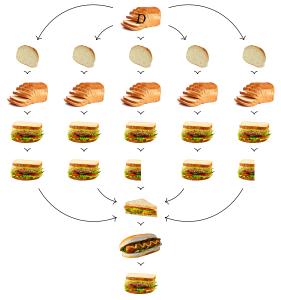
Bias Correction



A General Purpose, Statistically Valid DP Algorithm

Private data Partition Bag of little bootstraps Estimator Censor Average Noise **Bias Correction**

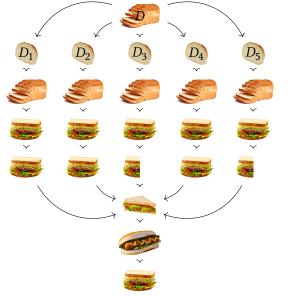
(& variance estimation)



A General Purpose, Statistically Valid DP Algorithm

Private data Partition Bag of little bootstraps Estimator Censor Average Noise **Bias Correction**

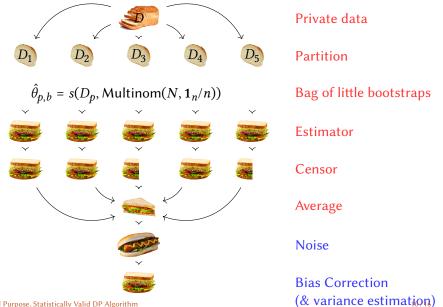
(& variance estimation)

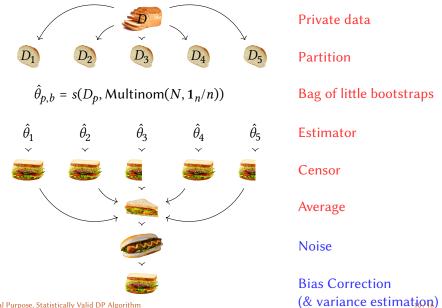


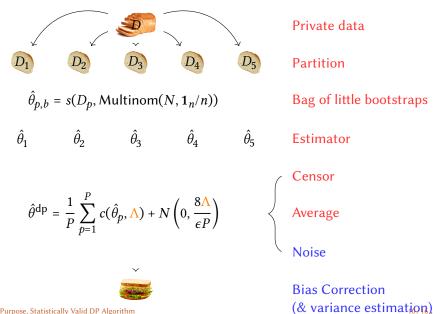
A General Purpose, Statistically Valid DP Algorithm

Private data Partition Bag of little bootstraps Estimator Censor Average Noise **Bias Correction**

(& variance estimation)



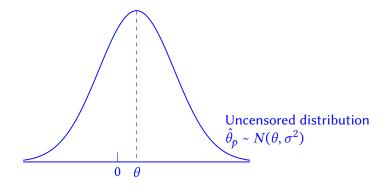


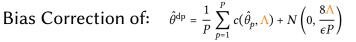


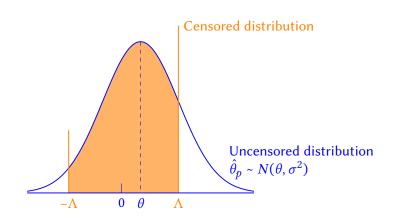
$$\hat{\theta}^{\mathsf{dp}} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_{p}, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$

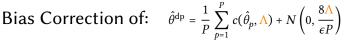
Bias Correction of: $\hat{\theta}$

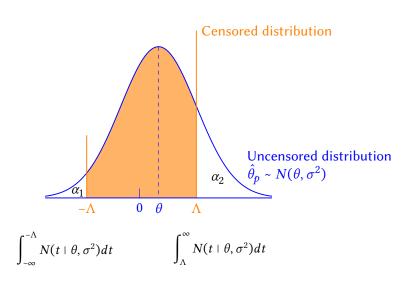
$$\hat{j}^{dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



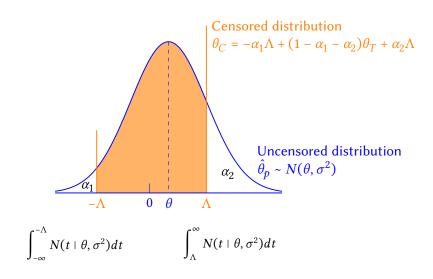




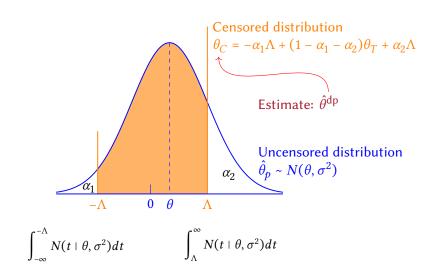




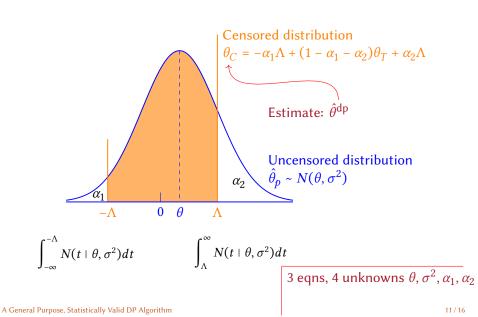
$$\hat{\theta}^{\mathsf{dp}} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_{p}, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



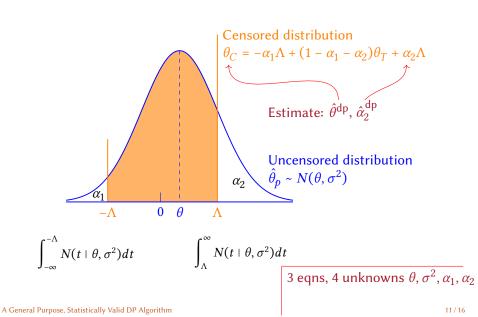
$$\hat{\theta}^{\rm dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



$$\hat{\theta}^{\rm dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$

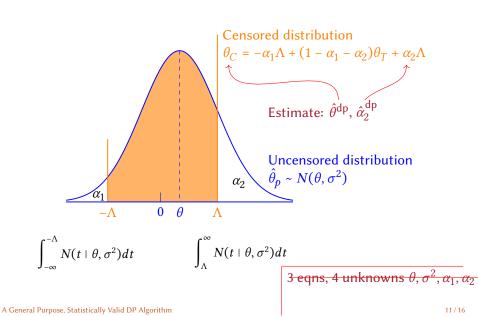


$$\hat{\theta}^{\rm dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



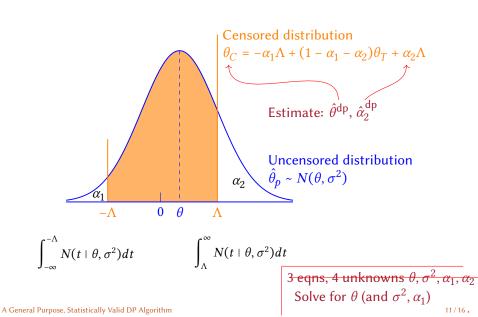
Bias Correction of:

$$\hat{\theta}^{\rm dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



Bias Correction of:

$$\hat{\theta}^{\rm dp} = \frac{1}{P} \sum_{p=1}^{P} c(\hat{\theta}_p, \Lambda) + N\left(0, \frac{8\Lambda}{\epsilon P}\right)$$



• DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_{2}^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) \\ \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_{2}^{dp}) \end{bmatrix} \right)$$

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_{2}^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) \\ \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_{2}^{dp}) \end{bmatrix}\right)$$

Functions of disclosed params'

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_{2}^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) \\ \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_{2}^{dp}) \end{bmatrix}\right)$$

Functions of disclosed params'

Bias correct simulated params:

$$\{\tilde{\theta}^{dp}(i), \hat{\alpha}_{1}^{dp}(i), \hat{\sigma}_{dp}^{2}(i)\} = \text{BiasCorrect}\left[\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i)\right]$$

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_{2}^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) \\ \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_{2}^{dp}) \end{bmatrix}\right)$$

Functions of disclosed params'

Bias correct simulated params:

$$\{\hat{\theta}^{dp}(i), \hat{\alpha}_{1}^{dp}(i), \hat{\sigma}_{dp}^{2}(i)\} = \text{BiasCorrect}\left[\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i)\right]$$

• Standard error: Standard deviation of $\tilde{\theta}^{dp}(i)$ over i

- DP Variance is unhelpful: $V(\hat{\theta})^{dp} \neq V(\hat{\theta}^{dp})$
- Simulate estimates via standard (Clarify) procedures:

$$\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i) \sim N\left(\begin{bmatrix} \hat{\theta}^{dp} \\ \hat{\alpha}_{2}^{dp} \end{bmatrix}, \begin{bmatrix} \hat{V}(\hat{\theta}^{dp}) & \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) \\ \widehat{Cov}(\hat{\alpha}_{2}^{dp}, \hat{\theta}^{dp}) & \hat{V}(\hat{\alpha}_{2}^{dp}) \end{bmatrix}\right)$$

Functions of disclosed params'

Bias correct simulated params:

$$\{\hat{\theta}^{dp}(i), \hat{\alpha}_{1}^{dp}(i), \hat{\sigma}_{dp}^{2}(i)\} = \text{BiasCorrect}\left[\hat{\theta}^{dp}(i), \hat{\alpha}_{2}^{dp}(i)\right]$$

- Standard error: Standard deviation of $\tilde{\theta}^{dp}(i)$ over i
- Bias correction: reduces bias and variance:

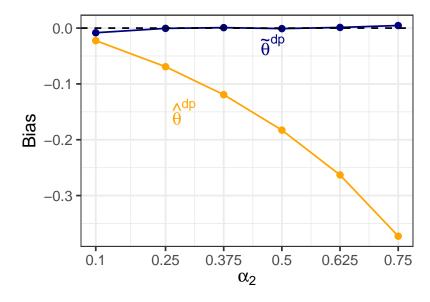
$$E(\tilde{\theta}^{dp}) \approx \theta, \qquad V(\tilde{\theta}^{dp}) \lesssim V(\hat{\theta}^{dp})$$

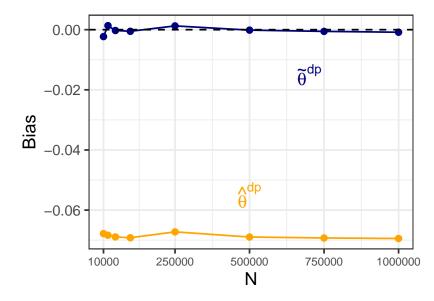
Solving Political Problems Technologically

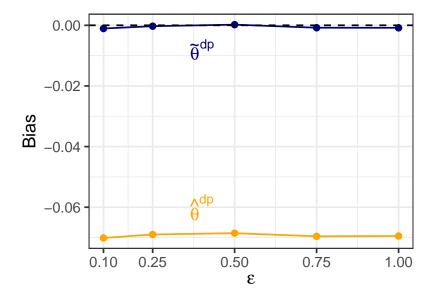
Differential Privacy & Inferential Validity

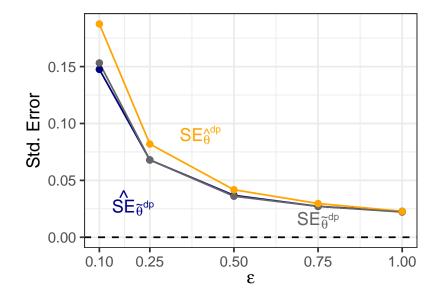
A General Purpose, Statistically Valid DP Algorithm

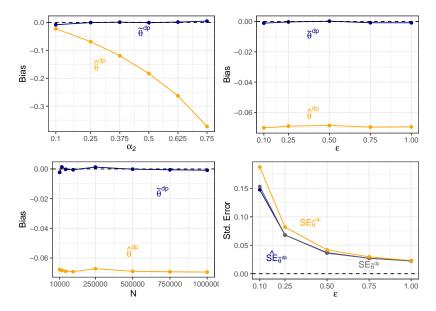
The Algorithm in Practice











The Algorithm in Practice

• Data sharing \rightsquigarrow data access

- Data sharing \rightsquigarrow data access
 - DP protects individual privacy

- Data sharing \sim data access
 - DP protects individual privacy
 - Enables inference to private database, not population

- Data sharing \sim data access
 - · DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates

- Data sharing \sim data access
 - · DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - · Fails to protect society from fallacious scientific conclusions

- Data sharing \sim data access
 - · DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - · Fails to protect society from fallacious scientific conclusions
- Inferential validity

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - Valid uncertainty estimates

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - Valid uncertainty estimates
 - Computationally efficient

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - · Valid uncertainty estimates
 - · Computationally efficient
 - · Solves political problems technologically

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - Valid uncertainty estimates
 - Computationally efficient
 - · Solves political problems technologically
 - Implementations in progress:

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - Valid uncertainty estimates
 - Computationally efficient
 - · Solves political problems technologically
 - Implementations in progress:
 - Facebook,

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - · Valid uncertainty estimates
 - · Computationally efficient
 - · Solves political problems technologically
 - Implementations in progress:
 - Facebook, Microsoft+IQSS,

- Data sharing \sim data access
 - DP protects individual privacy
 - · Enables inference to private database, not population
 - · Usually biased, no uncertainty estimates
 - Fails to protect society from fallacious scientific conclusions
- Inferential validity
 - A scientific statement: not necessarily correct, but must have:
 - · known statistical properties & valid uncertainty estimates
- Proposed algorithm
 - · Generic: almost any statistical method or quantity of interest
 - · Statistically unbiased, lower variance
 - Valid uncertainty estimates
 - Computationally efficient
 - · Solves political problems technologically
 - Implementations in progress:
 - Facebook, Microsoft+IQSS, OpenDP

For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp

The Algorithm in Practice