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Convincing Facebook to Make Data Available

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do

about this?”

This was Cambridge Analytica. (The worst timed
lobby effort in history! Time to go home.)

• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:

• Complete access to data, people, etc. (like employees)
• No pre-publication approval (like NO employees ever)

• We iterate, and I propose a 2-part solution

• Outside academics: send proposals, no company veto
• Trusted 3rd party: Commission at Social Science One signs

NDAs, agree not to publish from the data, chooses datasets,
makes final decisions; can report publicly if Facebook reneges

• Problem solved, without balancing⇝ agreements,
announcements, funding, 30+ people assigned at Facebook

• Just one issue:

Facebook’s implementation plan was illegal!

• New Problem: Sharing data without it leaving Facebook
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Data Sharing Regime⇝ Data Access Regime

• Data Sharing Regime: I give you data (maybe you sign DUA)

• Venerable, but failing
• Increasing public concern with privacy
• Scholars discovered: de-identification doesn’t work!
• Nor does

aggregation, query auditing, data clean rooms, legal
agreements, restricted viewing, paired programmer models, etc.

• Trusting researchers fails spectacularly at times (C.A.!)
• Even trusting a researcher known to be trustworthy can fail

• Data Access Regime

• Trusted server holds data;

researchers as adversaries, can run
any method⇝ noisy answer, a limited number of times

• Goal:

impossible to violate individual privacy; & possible to
discover population level patterns

• ≈ differential privacy

(seems to satisfy regulators et al.)

• New Problem:

Most DP algorithms are statistically invalid!
• unknown statistical properties (usually biased)
• no uncertainty estimates
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Differential Privacy and its Inferential Challenges

• Estimators

• Classical Statistics: Apply statistic 𝑠 to dataset 𝐷, 𝑠(𝐷)
• DP Mechanism: 𝑀(𝑠, 𝐷), with noise & censoring

• Essential components of ensuring privacy
• Fundamental problems for statistical inference

• The DP Standard

• Including (𝐷) or excluding (𝐷′) you doesn’t change conclusions

Pr[𝑀(𝑠, 𝐷) = 𝑚]
Pr[𝑀(𝑠, 𝐷′) = 𝑚] ∈ (1 ± 𝜖)

for all 𝐷, 𝐷′, 𝑚

• Examples all proven to protect the biggest possible outlier

• 𝑀(mean, 𝐷) = 1
𝑛

𝑛
∑
𝑖=1

𝑐(𝑦𝑖 , Λ) + 𝑁 (0, 4Λ𝑛𝜖 )
• Or: mess with gradients, 𝑋 ′𝑖 𝑋𝑖 , data, QOIs, etc.

• Statistical properties: usually biased, no uncertainty estimates
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Properties of Differential Privacy

• Post-processing: if 𝑀(𝑠, 𝐷) is DP, so is 𝑓 [𝑀(𝑠, 𝐷)]

• Useful for bias corrections

• Average privacy loss ≪ maximum privacy loss

• Privacy risk quantified (𝜖), instead of 0/1 for re-ID

• Risk for small groups (𝑘) drops linearly, 𝑘𝜖
• Composition: 𝜖1-DP and 𝜖2-DP is (𝜖1 + 𝜖2)-DP
• Privacy Budget

• Can sum and limit risks across analyses & researchers
• When the budget is used, no new analyses can ever be run
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DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:

• Data problems

— by running every possible diagnostic, data
exploration and visualization, and conducting numerous
statistical checks

• Researcher biases

— avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:

• Data problems

— by running every possible diagnostic, data
exploration and visualization, and conducting numerous
statistical checks

• Researcher biases

— avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems

— by running every possible diagnostic, data
exploration and visualization, and conducting numerous
statistical checks

• Researcher biases

— avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems

— by running every possible diagnostic, data
exploration and visualization, and conducting numerous
statistical checks

• Researcher biases

— avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases

— avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales

• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically

• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.

• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery

• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data

• Must plan data analyses carefully!
• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks

• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks
• No differential privacy: no data access or privacy at risk

• No inferential validity: incorrect scientific conclusions, medical
& policy advice; society and individuals at risk

• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks
• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk

• ⇝We need both DP and inferential validity

Differential Privacy & Inferential Validity 9 / 18



DP: Completely Changes Statistical Best Practices

• Normally we try to avoid being fooled by:
• Data problems — by running every possible diagnostic, data

exploration and visualization, and conducting numerous
statistical checks

• Researcher biases — avoiding p-hacking via preregistration or
“multiple comparison” corrections

• With DP: tips the scales
• p-hacking avoided almost automatically
• Little opportunity to explore data, run diagnostics, etc.
• Lower probability of serendipitous discovery
• Higher probability of being fooled by data
• Must plan data analyses carefully!

• Risks
• No differential privacy: no data access or privacy at risk
• No inferential validity: incorrect scientific conclusions, medical

& policy advice; society and individuals at risk
• ⇝We need both DP and inferential validity
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Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
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A Differentially Private Estimator

Private data𝐷

Partition𝐷1 𝐷2 𝐷3 𝐷4 𝐷5

Bag of little bootstrapŝ𝜃𝑝,𝑏 = 𝑠(𝐷𝑝 ,Multinom(𝑁 , 1𝑛/𝑛))

Estimator̂𝜃1 ̂𝜃2 ̂𝜃3 ̂𝜃4 ̂𝜃5

Censor

Average

Noise

̂𝜃dp = 1
𝑃

𝑃
∑
𝑝=1

𝑐( ̂𝜃𝑝 , Λ) + 𝑁 (0, 4Λ𝜖𝑃 )

Bias Correction
(& variance estimation)
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Bag of little bootstrapŝ𝜃𝑝,𝑏 = 𝑠(𝐷𝑝 ,Multinom(𝑁 , 1𝑛/𝑛))

Estimator̂𝜃1 ̂𝜃2 ̂𝜃3 ̂𝜃4 ̂𝜃5

Censor

Average

Noise

̂𝜃dp = 1
𝑃

𝑃
∑
𝑝=1

𝑐( ̂𝜃𝑝 , Λ) + 𝑁 (0, 4Λ𝜖𝑃 )

Bias Correction
(& variance estimation)

A General Purpose, Statistically Valid DP Algorithm 11 / 18



A Differentially Private Estimator

Private data

𝐷

Partition

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5
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Bias Correction of: ̂𝜃dp = 1
𝑃

𝑃
∑
𝑝=1

𝑐( ̂𝜃𝑝 , Λ) + 𝑁 (0, 4Λ𝜖𝑃 )

Λ−Λ 𝜃0

Censored distribution
𝜃𝐶 = −𝛼1Λ + (1 − 𝛼2 − 𝛼1)𝜃𝑇 + 𝛼2Λ

∫
−Λ

−∞
𝑁(𝑡 ∣ 𝜃, 𝜎 2)𝑑𝑡 ∫

∞

Λ
𝑁(𝑡 ∣ 𝜃, 𝜎 2)𝑑𝑡

Uncensored distribution
̂𝜃𝑝 ∼ 𝑁 (𝜃, 𝜎2)𝛼2𝛼1

Estimate: ̂𝜃dp, 𝛼̂dp
2

3 eqns, 4 unknowns 𝜃, 𝜎2, 𝛼1, 𝛼2
Solve for 𝜃 (and 𝜎2, 𝛼1)
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Variance Estimation

• DP Variance is unhelpful: 𝑉 ( ̂𝜃)dp ≠ 𝑉 ( ̂𝜃dp)
• Simulate estimates via standard (Clarify) procedures:

̂𝜃dp(𝑖), 𝛼̂dp
2 (𝑖) ∼ 𝑁 ([

̂𝜃dp

𝛼̂dp
2

] , [
𝑉̂ ( ̂𝜃dp) Ĉov(𝛼̂dp

2 , ̂𝜃dp)
Ĉov(𝛼̂dp

2 , ̂𝜃dp) 𝑉̂ (𝛼̂dp
2 )

])

Functions of disclosed params

• Bias correct simulated params:

{ ̃𝜃dp(𝑖), 𝛼̂dp
1 (𝑖), 𝜎̂2dp(𝑖)} = BiasCorrect [ ̂𝜃dp(𝑖), 𝛼̂dp

2 (𝑖)]

• Standard error, SE( ̃𝜃dp): Standard deviation of ̃𝜃dp(𝑖) over 𝑖
• Bias correction (usually) reduces bias and variance:

𝑉 ( ̃𝜃dp) < 𝑉 ( ̂𝜃dp)
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Theory and Practice

• Reducing DP’s Societal Risks. Report:

Effective reduction in 𝑁 = 1 −
𝜎̂2dp/𝑃

SE( ̃𝜃dp)
• Choosing 𝜖 (like a power calculation):

SE( ̃𝜃dp)2 < 𝑉 ( ̂𝜃dp) + (4Λ𝜖𝑃 )
2

• Choosing Λ

• Without bias correction: choose more censoring or more noise!
• With bias correction: Keep max(𝛼1, 𝛼2) < 0.6

• Privacy Policies:

• Science informs, but does not determine, policy
• Few if any implementations exactly meet DP standards
• Most use larger 𝜖 and no budget, but with other protections
• It’s safer: de-identification + noise and censoring
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Concluding Remarks

• Data sharing⇝ data access

• DP protects individual privacy
• Enables inference to private database, not population
• Usually biased, no uncertainty estimates
• Fails to protect society from fallacious scientific conclusions

• Inferential validity

• A scientific statement is not one that is correct; it is one that
comes with an appropriate degree of uncertainty

• Utility requires known statistical properties and valid
uncertainty estimates

• Proposed algorithm

• Generic: almost any statistical method or quantity of interest
• Statistically unbiased (if estimator is), lower variance
• Valid uncertainty estimates
• Computationally efficient
• Easy to implement
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For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp
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