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« The DP Standard
+ Including (D) or excluding (D) you doesn’t change conclusions

Pr[M(s,D) = m]

PMG. D) =] S 12O

forall D,D’, m

« Examples all proven to protect the biggest possible outlier
n

M( D) 12 (3, M) N(O 4A)
mean, D) = p2 c(y;, A) + o
« Or: mess with gradients, X/ X;, data, QOls, etc.

- Statistical properties: usually biased, no uncertainty estimates
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- Post-processing: if M(s, D) is DP, so is f[M(s, D)]
- Useful for bias corrections

- Average privacy loss €« maximum privacy loss

« Privacy risk quantified (¢), instead of 0/1 for re-ID

+ Risk for small groups (k) drops linearly, ke

- Composition: €;-DP and &;-DP is (¢1 + €3)-DP

+ Privacy Budget

- Can sum and limit risks across analyses & researchers
« When the budget is used, no new analyses can ever be run
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“multiple comparison” corrections

« With DP: tips the scales

+ p-hacking avoided almost automatically

- Little opportunity to explore data, run diagnostics, etc.

+ Lower probability of serendipitous discovery

- Higher probability of being fooled by data

+ Must plan data analyses carefully!

« Risks

- No differential privacy: no data access or privacy at risk

- No inferential validity: incorrect scientific conclusions, medical
& policy advice; society and individuals at risk

+ ~» We need both DP and inferential validity
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A Differentially Private Estimator

ép,b = s(Dp, Multinom(N, 1,/n))

6, b, 5 0y bs
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Pp 1 eP

~
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Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

. Simulate estimates via standard (Clarify) procedures:

gdp V(6P) Cov(as?, 49p)
89 (i), 5P (i) ~ N o

COV(O.’zp gy VP

Functlons of disclosed params

+ Bias correct simulated params:
109 (i), &P (i), 53 ()} = BiasCorrect [édp(i), ajp(i)]

- Standard error, SE(09P): Standard deviation of 0P (i) over i

« Bias correction (usually) reduces bias and variance:

V(§9P) < v(89P)
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« Reducing DP’s Societal Risks. Report:
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Effective reductioninN = 1- ———
SE(6dp)

« Choosing € (like a power calculation):
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+ Reducing DP’s Societal Risks. Report:
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Effective reductioninN = 1- ———
SE(6dp)

« Choosing € (like a power calculation):

i X 4A\2
SE(A9P)2 < v(dr) + (—)
eP

+ Choosing A
« Without bias correction: choose more censoring or more noise!
« With bias correction: Keep max(a, &) < 0.6
« Privacy Policies:
- Science informs, but does not determine, policy
- Few if any implementations exactly meet DP standards
+ Most use larger € and no budget, but with other protections
- It’s safer: de-identification + noise and censoring
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- Enables inference to private database, not population

« Usually biased, no uncertainty estimates

- Fails to protect society from fallacious scientific conclusions

+ Inferential validity

- A scientific statement is not one that is correct; it is one that
comes with an appropriate degree of uncertainty

- Utility requires known statistical properties and valid
uncertainty estimates

+ Proposed algorithm

+ Generic: almost any statistical method or quantity of interest
- Statistically unbiased (if estimator is), lower variance

+ Valid uncertainty estimates

- Computationally efficient

+ Easy to implement
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For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp
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