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- DP tips the scales: P-hacking avoided almost automatically,
exploration and serendipity replaced by careful planning
- Can address with: careful software design & education

Differential Privacy & Inferential Validity

16 .



A General Purpose, Statistically Valid DP Algorithm

A General Purpose, Statistically Valid DP Algorithm 9/16.



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

& Private data

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

Private data

Partition

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

/—; @ ;\ Private data

Partition

& @ & & & Bag of little bootstraps

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

/—; & ;\ Private data

Partition

\:;! > ) > 'v 3 \.:;,
& & & & @ Bag of little bootstraps
- & B & & o

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

/; @ ;\ Private data

Partition

Bag of little bootstraps
Estimator

Censor

&
=
E

aMaw
o i‘s*

@
=
=

A General Purpose, Statistically Valid DP Algorithm 10/16



A Differentially Private Estimator

\
/

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

10/16



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm

Private data
Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

10/16



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps

Estimator
Censor
Average
Noise

Bias Correction

10/16



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



A Differentially Private Estimator

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



A Differentially Private Estimator

<
<

= =

= =

N e

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



A Differentially Private Estimator

D

‘3

<@<—/‘3b)

q <5b><—/;§)
q <N<g <m <$><—/E}<

C e )

0
=

=

=
N,

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



A Differentially Private Estimator

0, 0, 05 0, 0
P

Hdp-—Zc( A)+N< )
p=1

A General Purpose, Statistically Valid DP Algorithm

Private data

Partition

Bag of little bootstraps
Estimator

Censor

Average

Noise

Bias Correction
(& variance estimation)



. . R 14 8
Bias Correction of: 4% = — Z c(6,, )+N(0,—) (1, P, € known)
p =t Pe

A General Purpose, Statistically Valid DP Algorithm 11/16



. . R 14 8
Bias Correction of: 4% = — Z c(6,, )+N(0,—) (1, P, € known)
p =t Pe

0, ~ N(6,0%)
Uncensored

A General Purpose, Statistically Valid DP Algorithm

11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, ﬁ) (A, P, € known)
p=1

Censored distribution

0, ~ N(6,0%)
Uncensored

A General Purpose, Statistically Valid DP Algorithm 11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, ﬁ) (A, P, € known)
p=1

Censored distribution

0, ~ N(6,0%)

a= J N(t10,c)dt
Uncensored A

A General Purpose, Statistically Valid DP Algorithm

11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, E) (A, P, € known)
p=1

Censored distribution

ép ~ N(0,6%) a= L N(t10,c)dt

Uncensored

0, = (1-a)f(0,0% a) + ah Goal

A General Purpose, Statistically Valid DP Algorithm 11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, E) (A, P, € known)
p=1

Censored distribution

ép ~ N(0,6%) a= L N(t10,c)dt

Uncensored

0, = (1-a)f(0,0% a) + ah Goal

Equations: 2

A General Purpose, Statistically Valid DP Algorithm

11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, E) (A, P, € known)
p=1

Censored distribution

9}, ~ N(0,6%) a= JA N(t10,c)dt

Uncensored

0, = (1-a)f(0,0% a) + ah Goal

Equations: 2

Unknowns: 6, 62, , 0,

A General Purpose, Statistically Valid DP Algorithm

11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, E) (A, P, € known)
p=1

Censored distribution

9}, ~ N(0,6%) a= JA N(t10,c)dt

Uncensored

0. = (1-a)f(0,0% a) + ah Goal

Equations: 2

Disclose: 4P
Unknowns: 6, 62, , X
A General Purpose, Statistically Valid DP Algorithm 11/16



. . R 1 & . 8/
Bias Correction of: 4% = > > (0, 1) +N(0, E) (A, P, € known)
p=1

Censored distribution

9}, ~ N(0,6%) a= JA N(t10,c)dt

Uncensored

0. = (1-a)f(0,0% a) + ah Goal

Disclose: édp, adp Equations: 2 2
Unknowns: 0, o, X, X

A General Purpose, Statistically Valid DP Algorithm 11/16.



Variance Estimation

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

- Simulate estimates via standard (Clarify) procedures:

) gdp
gde_adp - N A — R N
adp Cov(a9P, 99r) V(adr)

V(69P) Cov(adP, édp)])

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

- Simulate estimates via standard (Clarify) procedures:

) gdp
gdp 4P ~ N ,
adp

V(6P Cov(&dp, gdr)
Cov(&dp, gdr) V(adr)

uncti sclossTparame
Functions of disclosed params

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

- Simulate estimates via standard (Clarify) procedures:

. gdp V(69P) Cov(&dP, §p)
gde_adp - N A — R N
adp Cov(a9P, 99r) V(adr)

uncti sclossTparame
Functions of disclosed params

+ Bias correct simulated params:

{édp, c}gp} = BiasCorrect [édp, &dp]

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)

- Simulate estimates via standard (Clarify) procedures:

. gdp V(69P) Cov(&dP, §p)
gde_adp - N A — R N
adp Cov(a9P, 99r) V(adr)

uncti sclossTparame
Functions of disclosed params

+ Bias correct simulated params:
{édp, c}gp} = BiasCorrect [édp, &dp]

. Standard error: Standard deviation of 69 over simulations

A General Purpose, Statistically Valid DP Algorithm 12/16



Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)
- Simulate estimates via standard (Clarify) procedures:
Cov(adP, §%) V(a®)

. gde
g, adp - N ,
adp
uncti sclossTparame
Functions of disclosed params

+ Bias correct simulated params:

V(6P Cov(&d, édp)])

{édp, 5§p} = BiasCorrect [édp, &dp]

. Standard error: Standard deviation of 69 over simulations

+ Bias correction: reduces bias and variance:

E(69) ~ 0, V(6P < v(§dp)
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For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp

The Algorithm in Practice 16/16 .



	Solving Political Problems Technologically
	Differential Privacy & Inferential Validity
	A General Purpose, Statistically Valid DP Algorithm
	The Algorithm in Practice

