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EEVIEWPOINT: THE FUTURE =

Through the Glass Lightly

A collection of scientists at the frontier were asked what they see in the future for science.*

Here are their views....

If you can look into the seeds of time,

And say which grain will grow and which will not,
Speak then to me, who neither beg nor fear
Your favors nor your hate.

Shakespeare, Macbeth, 1.3.58-61

THERE WILL BE ENORMOUS INROADS INTO
human biology and human disease via
genomics, gene therapy, and mouse knock-
out models; a revolution in drug design by
combinatorial chemistry; an understanding
of the specificity of nerve connections and
cognition; and the logic of develop-
ment will be solved (if it is not solved al-
ready). New technologies will be developed
for studying the structure, function, and dy-
namics of multiprotein ensembles—for ex-
ample, the eukaryotic transcription com-
plexes. New methodologies will be devel-
oped for studying the behavior of single,
live cells in isolation or in the context of an
embryo. This includes studying the activity
of the cell itself as well as various subcellu-
lar structures.

Hal Weintraub
Fred Hutchinson Cancer Research Center
Seattle, Washington

individuals at risk for dia-
betes, schizophrenia, obe-
sity, and many other dis-
eases. In many cases, dis-
case will be either avoid-
able by modification of
behavior or ameliorated

by therapeutic intervention. For societies

with socialized health care programs, the
economic cost of screening will need to be
balanced by the overall savings in disease
reduction. If individuals refuse preventive
treatment, screening is not cost-effective.
For societies with private health care sys-
tems, the rich will become healthier and
the poor sicker. In both systems, balancing
the rights of individuals against the needs of
society is going to be difficult.
Peter N. Goodfellow
Department of Genetics
University of Cambridge

toxins, sunlight, and so forth. The output &
will be a color movie in which the embryo &
develops into a fetus, is born, and then z :
grows into an adult, explicitly depicting & g
Body size and shape and hair, skin, and eye &
color. Eventually the DNA sequence base £
will be expanded to cover genes impor-
tant for traits such as speech and mu-
sical ability; the mother will be able 2
to hear the embryo—as an adult—
speak or sing.
Harvey F. Lodish
Whitehead Institute for
Biomedical Research
Cambridge, Massachusetts

LLUSTRATI

THE OLD PHRASE “YOU
can’t get blood from a
B turnip” may be proven
incorrect, at least partially. Transgenic
plants hold promise as biomanufacturing
systems for a wide variety of human pro-
teins, including those found in blood
plasma. Serum albumin, for instance, has
been shown to be expressed and processed
correctly when the gene encoding it was in-
troduced into plants. The missing element
in this scenario is process technology,
which will make it possible to do large-scale
protein purification from plant tissues. Ad-
vances in high-level protein expression in
specialized plant tissues (such as seeds, fruits,
or tubers) coupled to eny meenng improve-
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Functions of disclosed params
* Bias correct simulated params:

{édp, Efdp} = BiasCorrect [édp, &dp]

Standard error: Standard deviation of 09 over simulations

* Bias correction: reduces bias and variance
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Similar Empirical Results, Larger Cls
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* Usually biased, no uncertainty estimates
* Fails to protect society from fallacious scientific conclusions
* Inferential validity
* A scientific statement: not necessarily correct, but must have:
* known statistical properties & valid uncertainty estimates
* Proposed algorithm

* Generic: almost any statistical method or quantity of interest
* Statistically unbiased, lower variance

* Valid uncertainty estimates

* Computationally efficient

* Solves political problems technologically

* Community based, Open Source Software: OpenDP.org
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observational data)
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