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Convincing Facebook to Make Data Available

• Gary visits Facebook to persuade them to make data available
• In my hotel room packing, email arrives: “Hey what do we do

about this?”

This was Cambridge Analytica. (The worst timed
lobby effort in history!)

• 3 days later: “Could you do a study of the 2016 election?”
• I’d love to, but I need 2 things & you’ll only give me 1:

• Complete access to data, people, etc. (like employees)
• No pre-publication approval (like NO employees ever)

• We iterate, and I propose a 2-part solution

• Outside academics: send proposals, no company veto
• Trusted 3rd party: Commission at Social Science One signs

NDAs, agree not to publish from the data, chooses datasets,
makes final decisions; can report publicly if Facebook reneges

• Problem solved, without balancing ; agreements,
announcements, funding, 30+ people assigned at Facebook

• Just one issue:

Facebook’s implementation plan was illegal!

• New Problem: Sharing data without it leaving Facebook
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Data Sharing Regime ; Data Access Regime

• Data Sharing Regime: I give you data (maybe you sign DUA)

• Venerable, but failing
• Increasing public concern with privacy
• Scholars discovered: de-identification doesn’t work!
• Nor does

aggregation, query auditing, data clean rooms, legal
agreements, restricted viewing, paired programmer models, etc.

• Trusting researchers fails spectacularly at times (C.A.!)
• Even trusting a researcher known to be trustworthy can fail

• Data Access Regime

• Trusted server holds data;

researchers as adversaries, can run
any method ; noisy answer, a limited number of times

• Goal:

impossible to violate individual privacy; & possible to
discover population level patterns

• ≈ differential privacy

(seems to satisfy regulators et al.)

• New Problem:

Most DP algorithms are statistically invalid!
• unknown statistical properties (usually biased)
• no uncertainty estimates
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Theories of Inference: Statistics vs. CS
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Differential Privacy and its Inferential Challenges

• Estimators

• Classical Statistics: Apply statistic 𝑠 to dataset 𝐷, 𝑠(𝐷)
• DP Mechanism: 𝑀(𝑠, 𝐷), with noise & censoring

• Essential components of ensuring privacy
• Fundamental problems for statistical inference

• The DP Standard (simplifying)

• Including (𝐷) or excluding (𝐷′) you doesn’t change conclusions

Pr[𝑀(𝑠, 𝐷) = 𝑚]
Pr[𝑀(𝑠, 𝐷′) = 𝑚] ∈ 1 ± 𝜖

for all 𝐷,𝐷′, 𝑚

• Examples all proven to protect the biggest possible outlier

• 𝑀(mean, 𝐷) = 1
𝑛

𝑛
∑
𝑖=1

𝑐(𝑦𝑖, Λ) + 𝑁 (0, 8Λ𝑛𝜖 ) (Λ, 𝑛, 𝜖 known)

• Or: mess with gradients, 𝑋 ′𝑖 𝑋𝑖, data, QOIs, etc.

• Statistical properties: usually biased, no uncertainty estimates
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Solving Political Problems Technologically

Differential Privacy & Inferential Validity

A General Purpose, Statistically Valid DP Algorithm

The Algorithm in Practice
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A Differentially Private Estimator

Private data𝐷

Partition𝐷1 𝐷2 𝐷3 𝐷4 𝐷5

Bag of little bootstraps

Estimator̂𝜃1 ̂𝜃2 ̂𝜃3 ̂𝜃4 ̂𝜃5

Censor

Average

Noise

̂𝜃dp = 1
𝑃

𝑃
∑
𝑝=1

𝑐( ̂𝜃𝑝 , Λ) + 𝑁 (0, 8Λ𝑃𝜖 )

Bias Correction
(& variance estimation)
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Bias Correction of: ̂𝜃dp = 1
𝑃

𝑃
∑
𝑝=1

𝑐( ̂𝜃𝑝 , Λ) + 𝑁 (0, 8Λ𝑃𝜖 ) (Λ, 𝑃, 𝜖 known)

𝜃

Uncensored

̂𝜃𝑝 ∼ 𝑁(𝜃, 𝜎2)

Goal

Λ𝜃𝑐 𝜃

Censored distribution

𝛼 = ∫
∞

Λ
𝑁(𝑡 ∣ 𝜃 , 𝜎 2)𝑑𝑡

𝛼

𝜃𝑐 = (1 − 𝛼)𝜃𝑇 + 𝛼Λ

Equations: 2
Unknowns: 𝜃 , 𝜎2, 𝛼 , 𝜃𝑐Disclose: ̂𝜃dp

7
, 𝛼̂dp

7
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Variance Estimation

• Simulate estimates via standard (Clarify) procedures:

̂𝜃dp, 𝛼̂dp ∼ 𝑁 ([
̂𝜃dp

𝛼̂dp
] , [ 𝑉̂ ( ̂𝜃dp) Ĉov(𝛼̂dp, ̂𝜃dp)

Ĉov(𝛼̂dp, ̂𝜃dp) 𝑉̂ (𝛼̂dp) ])

Functions of disclosed params

• Bias correct simulated params:

{ ̃𝜃dp, 𝜎̂2dp} = BiasCorrect [ ̂𝜃dp, 𝛼̂dp]

• Standard error: Standard deviation of ̃𝜃dp over simulations
• Bias correction: reduces bias and variance
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Similar Empirical Results, Larger CIs
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Concluding Remarks

• Data sharing ; data access

• DP protects individual privacy
• Enables inference to private database, not population
• Usually biased, no uncertainty estimates
• Fails to protect society from fallacious scientific conclusions

• Inferential validity

• A scientific statement: not necessarily correct, but must have:
• known statistical properties & valid uncertainty estimates

• Proposed algorithm

• Generic: almost any statistical method or quantity of interest
• Statistically unbiased, lower variance
• Valid uncertainty estimates
• Computationally efficient
• Solves political problems technologically
• Implementations:

• Facebook, Microsoft+Harvard/IQSS, OpenDP
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Papers, software, slides, videos: GaryKing.org/privacy

• Georgina Evans, Gary King, Margaret Schwenzfeier, and
Abhradeep Thakurta. “Statistically Valid Inferences from
Privacy Protected Data”

• Georgina Evans, Gary King, Adam D. Smith, Abhradeep
Thakurta. Forthcoming. “Differentially Private Survey
Research” American Journal of Political Science

• Georgina Evans and Gary King. Forthcoming. “Statistically
Valid Inferences from Differentially Private Data Releases, with
Application to the Facebook URLs Dataset” Political Analysis
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Properties of Differential Privacy

• Post-processing: if 𝑀(𝑠, 𝐷) is DP, so is 𝑓 [𝑀(𝑠, 𝐷)]

• Useful for bias corrections

• Privacy risk quantified (𝜖), instead of 0/1 for re-ID

• Helpful mathematically; insufficient in applications

• Real privacy loss ≪ maximum privacy loss

• OK for worst case scenerio; unhelpful in practice

• Privacy Budget

• Composition: 𝜖1-DP and 𝜖2-DP is (𝜖1 + 𝜖2)-DP
• Can limit maximum risks across analyses & researchers
• When the budget is used, no new analyses can ever be run

• Completely changes statistical best practices

• Without DP, we balance worries:

• P-hacking

; pre-registration (e.g., clinical trials, Mars lander)

• Threats to inference

; diagnostics, exploration, serendipity (e.g.,
observational data)

• With DP:

�����XXXXXP-hacking, surveys treated like the Mars lander
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