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Functions of disclosed params
* Bias correct simulated params:

{édp, Efdp} = BiasCorrect [édp, &dp]

Standard error: Standard deviation of 09 over simulations
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* Enables inference to private database, not population
° Usually biased, no uncertainty estimates
* Fails to protect society from fallacious scientific conclusions
* Inferential validity
* A scientific statement: not necessarily correct, but must have:
° known statistical properties & valid uncertainty estimates
* Proposed algorithm
* Generic: almost any statistical method or quantity of interest
* Statistically unbiased, lower variance
* Valid uncertainty estimates
* Computationally efficient

* Solves political problems technologically
* Implementations:

* Facebook, Microsoft+Harvard/IQSS, OpenDP
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