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Variance Estimation

« DP Variance is unhelpful: V(9P = v(9dP)
- Simulate estimates via standard (Clarify) procedures:
Cov(adP, §%) V(a®)

. gde
g, adp - N ,
adp
uncti sclossTparame
Functions of disclosed params

+ Bias correct simulated params:

V(6P Cov(&d, édp)])

{édp, 5§p} = BiasCorrect [édp, &dp]

. Standard error: Standard deviation of 69 over simulations

+ Bias correction: reduces bias and variance:

E(69) ~ 0, V(6P < v(§dp)
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For more information

Georgina-Evans.com

GaryKing.org

MegSchwenzfeier.com

bit.ly/AbhradeepThakurta

Paper, software, slides: GaryKing.org/dp
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