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Appendix A Connections to Log-Linear Modeling

To provide additional intuition for how the method in Section 4.2 works, we describe

the deep connection between this approach and the classic log-linear modeling literature.

Log-linear models were popular decades ago because of their computational advantage

when a large n logistic regression was burdensome or infeasible, and also because certain

types of information, such as occupational mobility tables in sociology, may be more

naturally represented in tabular form (Agresti, 2007; Awan and Cai, 2020; Christensen,

2006).

This literature shows, without noise, that when survey respondents are selected inde-

pendently, we can aggregate individual level Bernoulli variables, connected by a logistic

regression model (using data in the form of Panel (a), Table 1), into a Poisson regression

model with the counts as the unit of analysis (in the form of Panel (c)). Without any ad-

ditional assumptions (Jing and Papathomas, 2020), we can then model the counts directly

and produce the identical estimate of β as an individual level logistic regression from

Equation 4. We give this result here first without noise and then reveal the modifications

needed when adding noise.

To connect the two models, we write Pr(Y = 1|Xi) ≡ πi as the proportion of

observation counts with y = 1 as πi(k) = λi(k)/(λi(k) + λi(k−1)) for expected count

E(gi(k)) = λi(k), with even values of k, as in Panel (c). We then consider this count-

level log-linear model:

gi(k) ∼ Poisson
(
λi(k)

)
, lnλi(k) = Xi(k)γ + yi(k)(Xi(k)β). (1)

Noting that Equation 4 can be written as ln[πi/(1− πi)] = Xiβ, we write

ln
πi(k)

1− πi(k)
= lnλi(k) − lnλi(k−1) = Xi(k)β (2)

which shows that β in the log-linear model representation in Equation 1 is the same quan-

tity as in the individual level logistic regression in Equation 4. Note that the ancillary

parameter γ in Equation 1, which indicates how imbalanced are the marginal values of

X , is included in the individual level logistic regression representation and is orthogonal
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to β. It must be included in the log-linear model but estimates of it can be ignored. From

a data analyst’s point of view, the count-level interaction (yi(k) · Yi(k)) between two right

hand side variables in this expression — which the logit model regards substantively as

explanatory and dependent variables, respectively — enables us to estimate the effect of

a noninteracted individual-level explanatory variable xi(k) on yi(k).

When differentially private noise is added to the counts, gi(k) becomes unobserved, and

so we replace it with an unbiased estimate, which we call λ̂ and define as either gdp
i(k) under

the central model (Section 3.4) or ĝi(k) under the local model (Section 3.3). However, even

with noise added to the counts, xi(k) and yi(k) are measured without error, since indicator

variable values are known exactly for each of the K rows. This fact is especially useful

because then, under the log-linear model representation, random noise only appears in the

outcome variable where it is less likely to bias parameter estimates (unlike error in right

side variables, which always induce bias; see Evans and King Forthcoming, 2021, Section

4.1). If we use the score equation to find the maximum likelihood estimator under a log-

linear model approach, we find the identical estimate as that with unbiased estimating

equations in Section 4.2.1

Classically computed Poisson regression model standard errors are too small with

noisy counts because the outcome variable is Poisson plus noise. Thus, even if the mean

specification is correct, the count will be overdispersed (i.e., unlike the Poisson, the vari-

ance will be larger than the mean; see Cameron and Trivedi 1998; King 1989). Overdis-

persed count data can sometimes be corrected by robust variance estimation, but in this

case we know the noise process exactly and so can do substantially better. The solution

here is described in Appendix B, the same as we use under unbiased estimating equations.

Appendix B Log-Linear Variance Estimation

We now derive a variance estimator for our log-linear model approach from Section 4.2.

Begin with the second order partial derivatives of the Poisson log-likelihood, without

1The score equations used to optimize here are ∂ lnL
∂λm

=
∑K
k=1 x̃km

(
gk − ex̃kλ

)
= 0, where we use x̃

to generically represent the chosen model matrix of log-linear model specification.
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noise:

∂2 lnL

∂λm∂λl
= −

K∑
k=1

x̃kmx̃klexp(x̃kλ) = −X ′WX (3)

where W = diag(exp(x̃′1λ̂) . . . exp(x̃′K λ̂)), and the variance is V̂ (λ̂) = (X ′WX)−1.

This approach uses plug in estimators for X and W , and so will be biased under

overdispersion. Under classical overdispersion, this problem can be corrected by the ro-

bust sandwich estimator,

Ṽ (λ̂) =
(
X ′ŴX

)−1
X ′W̃X

(
X ′ŴX

)−1
(4)

where W̃ = diag((ĝ1−exp(x̃′1λ)
2, . . . , ĝK−exp(x̃′Kλ)

2), estimates the degree of overdis-

persion. In our case, however, we can do considerably better because we know the degree

of overdispersion exactly. We thus instead use

V̇ (λ̂) =
(
X ′ŴX

)−1
X ′ẆX

(
X ′ŴX

)−1
(5)

where Ẇ = diag(exp(x̃′1λ) + S2, ..., exp(x̃′1λ) + S2) and S2 is the noise in the counts

induced by ε.

Appendix C Full Information

We now develop algorithms for maximizing Equation 11: An EM algorithm in Section

C.2, its variance estimator in Section C.3, and a fast approximation in Section C.4.

C.1 Randomized Response Distribution

We derive p(gdp
k |gk) for randomized response by first recognizing that the differentially

private count is the sum of two random variables: the true 1s that are not flipped added to

the true 0s that are flipped. More formally, gdp
k = N1k +N0k, where

N1k ∼ Binomial
(
gk,

exp(εl)
1 + exp(εl)

)
, N0k ∼ Binomial

(
n− gk,

1

1 + exp(εl)

)
.

(6)
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Then, since the noise for each element of the one-hot encoded vector occurs indepen-

dently, we can use the formula for the convolution of independent random variables:2

p(gdp
k |gk) =

g
dp
k∑

n1k=0

(
gk
n1k

)
pn1k(1− p)gk−n1k ·

(
n− gk
gdp
k − n1k

)
(1− p)g

dp
k −n1kp(n−gk)−(g

dp
k −n1k)

= Binomial
(
n,

[
2p− 1

n

]
· gk + (1− p)

)
(7)

where p = 1/(1 + eε).

C.2 EM Algorithm

We begin with the expected complete data log-likelihood:

Eg[L(λ; gdp)] =
K∑
k=1

∑
g

ln
[
p(gdp

k |gk = g)p(gk = g|λ)
]
· p(gk = g|gdp

k ;λ), (8)

and then write the E-Step by defining

γ(g;λ(t)) ≡ p(gdp
k |gk = g) ·

exp(x̃′i(k)λ̂
(t))gexp(−exp(x̃′i(k)λ̂

(t)))

g!

and writing

p(g|gdp
k ; λ̂(t)) =

γ(g;λ(t))∑
c̃k
γ(c̃k;λ(t))

.

Then the M-step is

λ̂(t+1) = arg max
λ

K∑
k=1

∑
g

γ(g)∑
c̃i(k)

γ(c̃k)

[
gx̃′i(k)λ− exp(x̃′i(k)λ)− ln(g!)

]
,

which reflects the fact that the log-likelihood does not depend on the differentially private

counts once we condition on the private counts. We implement the maximization step

conveniently via weighted Poissson regression. The algorithm repeats these steps until

convergence.

C.3 Variance Estimation

We denote the final EM estimate from Section C.2 by λ∗ and now show how to estimate its

variance. First, by the properties of maximum likelihood estimation, the limiting distribu-

tion of λ∗ is N (λ, I(λ)−1), where I(λ) = −E[lnL′′(λ, gdp)], which can be estimated by

2Define gdp
k = N1k + N1k. N1k and N0k are discrete independent variables, so P (gdp

k = z) =∑z
n1=0 P (N1k = n1)P (N0k = z − n1).
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the observed information matrix, I(λ∗) = − lnL′′(λ∗; gdp). Hence our variance estimator

is [I(λ∗)]−1.

One of the drawbacks of the EM algorithm is that I(λ∗) is not produced as a by-

product. One option for calculating it is via brute force computation, by finding the hes-

sian of the observed data log-likelihood function evaluated at λ∗. However is this difficult

for the same reason we turned to EM rather than maximizing this likelihood directly in

the first place — the observed data log-likelihood contains the log of a sum. We therefore

estimate I(λ∗) by a two-step calculation using Oakes’ identity (Oakes, 1999):

− lnL′′(λ; gdp)︸ ︷︷ ︸
Observed information

= E[− lnL′′(λ; g, gdp)]︸ ︷︷ ︸
Complete information

−E[− ln f ′′(g|gdp;λ)]︸ ︷︷ ︸
Missing information

, (9)

which is advantageous because estimating the complete information, Ig,gdp(λ), and miss-

ing information, Ig|gdp(λ), separately is much faster than estimating the observed informa-

tion directly. We can then estimate the complete information directly from the M-step in

the final iteration. The missing information is approximated using a simple Monte Carlo

procedure. First note that

Ig|gdp(λ) = Var
[
∂ ln f(g|gdp;λ)

∂λ

]
can be approximated by simulating datasets {g(i), gdp} for i ∈ 1...N and then taking the

sample variance over N of ∂ ln f(g(i)|gdp;λ)
∂λ

. More explicitly, we can draw {g(i), gdp} from

the distribution defined by:

p(g
(i)
k = g) =

γ(g;λ∗)∑
c̃k
γ(c̃k;λ∗)

Then we take the derivative analytically by recognizing that

ln f(g(i)|gdp;λ∗) =
K∑
k=1

ln(γ(g;λ∗)) + ln

(∑
c̃k

γ(c̃k;λ
∗)

)

which gives

∂ ln f(g(i)|gdp;λ∗)

∂λ∗
=
∑
k

x̃k(g
(i)
k − exp(x̃′λ∗))︸ ︷︷ ︸

Poisson score equation

+
∂ ln

(∑
c̃k
γ(c̃k;λ

∗)
)

∂λ∗
.
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Since the second term is constant with respect to g(i), it does not influence the sample

variance and can be ignored. This conveniently allows us to avoid taking the derivative

with respect to the log of a sum.

Now we have estimates of Ig,gdp(λ) and Ig|gdp(λ), we substitute in our estimates to

[Ig,gdp(λ)− Ig|gdp(λ)]−1 to yield our final variance estimate.

C.4 Fast Approximation for Randomized Response

Let gdpk = gk + vk, where vk is the noise, so that

E[vk] = E[E(gdpk − gk | gk)] = E[(2p− 2)gk + (1− π)n]

= (2π − 2)exp(x′kλ) + (1− π)n. (10)

Then approximate by proceeding as if, conditional on {xk, λ}, vk is independent of

gk. Then, recognizing that the close relationship between the binomial and Poisson dis-

tributions, the distribution of vk can be well approximated by a Poisson with parameter

given by Equation 10: vk|xk, λ ∼ Pois((2p− 2)exp(x′kλ) + (1− p)n.

Under this assumption, the observed data likelihood is given by:

L(λ; gdp) =
K∏
k=1

∞∑
g=0

exp(−γ1k)γ
gdpk −g
1k

(gdpk − g)!
exp(−γ2k)γg2k

g!

where γ1k = (2p− 2)exp(x′kλ) + (1− p)n and γ2k = exp(x′kλ), which simplifies to

=
K∏
k=1

exp(−(γ1k + γ1k))(γ1k + γ2k)
gdpk

gdpk !︸ ︷︷ ︸
Poisson pmf

.

We then find the maximum likelihood estimate of λ by maximizing this log-likelihood:

lnL(λ; gdp) =
K∑
k=1

−(γ1k + γ1k) + gdpk ln [γ1k + γ2k]

which means our approximate FIML estimator is

λ̂ = arg max
λ

K∑
k=1

−(2p− 1)exp(x′kλ) + gdpk ln [(2p− 1)exp(x′kλ) + (1− p)n] . (11)

Through extensive simulation analyses and empirical tests, we find that any differences in

estimates between FIML and this approximate FIML are almost always trivially small.
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Appendix D Connections between FIML and LLM

The connection between FIML and LLM is easiest to see in the FIML likelihood func-

tion in Equation 11 which, without noise (i.e., ε → ∞), simplifies to the same Poisson

regression model as LLM simplifies to: L(λ) =
∏K

k=1 p(gi(k)|λi(k)). Thus, FIML will

outperform LLM when (1) the underlying count estimates contain noise — meaning that

p(gdp
i(k)|gi(k)) does not collapse to a spike at the true value, the estimated counts are overdis-

persed, and as a result the LLM estimates are inefficient — and (2) the FIML estimate of

the probability distribution p(gi(k)|λi(k)) is informative.

Condition (1) occurs when noise is added to protect privacy. Condition (2) is satisfied

when the LLM estimator ignores information that FIML can take advantage of. To see

where this information arises, consider again the log-linear specification on the estimated

counts in Equation 1 used in both FIML and LLM and note that it is more general than

the logistic specification because of parameter γ. For example, suppose we construct

the estimated counts with three variables, as we do in Table 1, by also collecting survey

variable zk. This variable would not seem to be material because whether or not it is

included as an additional term in Equation 1, it would not appear in the corresponding

logistic model and does not change the interpretation of the other parameters or their

estimates — so long as no noise is added to the counts. However, with noise added,

these extra variables that do not appear in the logistic specification can be quite important.

Our LLM estimate ignores this information, but our FIML estimate extracts whatever

information is available from it.

Appendix E Further Details on Abortion Attitudes Study

To illustrate how differential privacy influences the data from the abortion attitudes repli-

cation we conduct in Section 5.2, we show how the distribution of counts across the one-

hot vector, g, changes as the level of privacy imposed, ε, increases.

The variables we used include vote (with 4 categories, including vote no, vote yes, no

vote, and do not know), Age (in 6 groups), Sex (2 categories), Education (6 categories),

and Party Identification (4 categories). This leaves a one-hot vector with 4×6×2×6×4 =
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1, 152 elements. Then in the left panel of Figure 1, we plot the distribution of counts

associated with each answer combination observed in the raw data with no noise. Only

around half of answer combinations are actually observed, as evidenced by the large spike

at 0. Few answer combinations are observed more than 5 times.
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Figure 1: How Differentially Private Noise Affects the Distribution of Counts from the
One-Hot Vector (Note: S2 = 2 ∗ (1/ε2) and so S2 is 8 when ε = 0.5, and 0.22 when
ε = 3)

In the middle and right panels, we plot the (now noisy) counts at two different privacy

levels. When privacy protection (middle panel, with ε = 3), the shape of the distribution

is visually similar to the noiseless distribution on the left. With the higher degree of

privacy protection we use in our application (right panel, ε = 0.5), the distribution is

more distorted: it is closer to symmetric and a now substantial proportion is below 0 due

to the noise. (To be clear, this graph does not indicate that the counts are below zero; only

the counts plus noise are, which of course is part of what must be corrected.)

Appendix F Privacy Budgeting

The more information we elicit from any one research subject, the easier it would be to

re-identify that person from a dataset, and so the more of the privacy budget we must

spend to prevent it. It therefore makes good sense to limit the information we collect to

that which we actually need for our analyses and eventual publication. This then leads
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us to ask what in fact we need for any one research project. This section elaborates and

expands on Section 6.

F.1 Principles

The strategy of limiting data collection to essential information is consistent with ethi-

cal principles of data collection, so we limit burdens to our research subjects. It is also

consistent with commonly used social science research procedures applied before data

is collected — including power analyses, experimental design, survey research sampling

procedures, survey instrument design, and preregistration. These venerable procedures

work well only when the information we need for our analyses are in fact accurately

known ex ante.

However, if we get wrong what we need, and do not collect it, we will obviously miss

it. This of course is the nature of the difficult choices researchers make every day in data

collection, especially for expensive data collection projects based on sample surveys and

large randomized experiments. For example, it would be best to guarantee representative-

ness (of the sample compared to the population) by careful choice and implementation of

our random selection procedures; and similarly in experiments we should ensure statisti-

cal balance (between the treated and control groups) by random assignment procedures.

Collecting variables to verify these would be wasteful if our procedures are trustworthy,

but adding some may be useful just in case something goes wrong. Since this trade off

is well known, researchers are commonly drawn to limiting information and also the op-

posite goal of including extra variables we do not have immediate plans for, so that we

can conduct multiple tests of our hypotheses, tests of new hypotheses, purely exploratory

analyses, verification of our selection procedures and, in experiments, randomized de-

signs.

The general nature of the trade off we make in differential privacy is thus the same as

without privatizing procedures, although we now have additional motivation to do what-

ever we can ex ante.

10



F.2 Practices

Ways of limiting information collected for any one individual include eliminating survey

questions, asking for only coarsened answers (age group rather than age, degree rather

than years of education, etc.; Iacus, King, and Porro 2012), limiting questions to only

relevant subsets of respondents, collecting information about an index rather than individ-

ual variables making up the index when feasible (such as eliciting the number of times a

respondent read a newspaper in the last week, rather than asking seven binary questions

about each day of the week), or even applying randomized response when feasible (see

Section 3.1).

We do not list in the previous paragraph the commonly used approach of “removing

personal identifiers” because, whether a researcher considers a variable to be a personal

identifier, is immaterial; the question is whether any variable or combination of variables

can in principle identify an individual, regardless of the motive of the researcher in col-

lecting the variable in the first place. Although we know a phone number can identify

an individual or household, in many cases a combination of other variables intended for

unrelated purposes can be as effective for identifying an individual. The resulting privacy

violation would be the same as well. Differential privacy protects respondents regardless

of whether a variable is designated as a personal identifier.

In other words, once differential privacy is applied any data (that is to the right of

the chosen point among the five choices in our Figure 1), we can be confident the data is

secure for any threat model – that is, regardless of the motives of and information available

to any potential attacker. This means that many intuitive approaches to protecting privacy

which may work in partial ways, for some attackers, with some motives, or with certain

types of information, does not change the epsilon bound, as it only measures the privacy

leakage that is possible. If we are optimistic, they may help, but the recent history of data

privacy protection suggests a more careful stance.

The same logic also applies to information about respondents but not elicited from

them, such as available from (1) background information (such as location), (2) metadata

(time, place, or condition of interview), (3) variables created during the interview such
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as for randomized assignment in experiments, or (4) derived variables created from 1-3,

perhaps in combination with elicited survey responses (such as survey weights). Some of

this information seems less sensitive and indeed, for some purposes or some attackers, it

is. However, differential privacy is a conservative standard that protects against all pos-

sible attackers, even if we fail to think of their motives ex ante. For example, the state

of residence of respondents seems like such an aggregated quantity as to be innocuous,

and revealing whether the researcher randomly assigned some respondent to the treatment

or control group seems unlikely to lead to privacy violations since it is by definition un-

related to all other variables. However, if these variables can be combined with some

external information, they may make it possible for an attacker to identify a respondent in

a different database. Ruling out any one attack because we conclude no one would try it

is unsafe. Differential privacy makes it unnecessary.

Finally, it is worth asking when our procedures could be avoided altogether. Consider

several situations. First, if the dataset a researcher is seeking is already available publicly,

and a determined attacker could merely search the web to find it, privatizing the data

might be unnecessary. A counterpoint to this position is Roberts (2018) who shows that

secrecy is not a binary concept, where something is private or not private; she instead

demonstrates that degrees of privacy violations can be crucial. For example, suppose a

research subject has a criminal conviction that is publicly available only by going to the

basement of a small town hall in rural Kansas, but a researcher makes that available in

a searchable database on the web; even if legal, the respondent may well suffer from

publication of this research without privatization.

Second, “data mission creep” is an ongoing problem where data collected for one

purpose, and agreed to by the respondent, is used for a purpose not previously envisioned.

This is a major issue with corporate data collection, but it is also a concern for creative

social scientists who do this routinely. If we know the purpose to which the data will

be put, we may opt for fewer privacy protections, but it is not always possible to limit

unexpected uses. Differential privacy protects against all possible uses and all possible

threat models.
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Third, maybe we should not be worried for certain topics of study. Obviously, private

information about sexual behavior, national security secrets, unobserved criminal behav-

ior, and many other topics of legitimate study by academics needs to be protected. But

where is the line? The lesson from the literature is that outguessing possible attackers

based on topic is risky. For example, is it safe to assume that no attacker would be in-

terested in a dataset used to study the well known effect of partisan identification on the

vote? Possibly, but would a public official who happened to be in the survey be harmed

if she reported voting for a member of the opposition party? Suppose income is elicited

in this study as control variable; could a government tax authority, or the respondent’s ex

spouse, use that information to hurt the respondent as a consequence of our research? Re-

markably differential privacy can protect respondents in situations when we are not able

to guess the motives of possible attackers.

As scholars, we hope that the answers to when this technology should be used will de-

pend, not only on the level of privacy we can offer respondents, but also on the remarkable

public good and knowledge that can come from social science research. To help ensure

the latter, we social scientists must take it as our responsibility to guarantee the former.

At the same time, we can publicly evaluate the claims of data providers to be making use-

ful data available for public good by reporting the “proportionate loss in effective sample

size”, L (See Section 5.1). This quantity can be computed and reported without additional

privacy budget expenditure, every time our methods are used to analyze differentially pri-

vate data. The value of L depends on the variance of the underlying estimator (without

DP) and how much noise inflates the variance of that estimator. As a result, it will not

necessarily decrease monotonically in the sample size for a fixed privacy budget, which

equates to fixed variability in the counts. (To see this, take the extreme cases of a very

small sample size and a very large sample size. Both can produce a high proportionate

loss, but for differing reasons. With a small sample size, the variance without DP will

very high, but the variance in the counts from DP will also destroy a large amount of in-

formation, thus yielding a relatively high loss in effective sample size. With a very large

sample, there is effectively no sampling uncertainty without DP, and so the DP noise will
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constitute a large degree of the remaining uncertainty, again yielding a relatively high loss

in effective sample size.) As such, providing estimates of L for all empirical analyses is

recommended.

At the end of the day, when privatization technology should be used — or choos-

ing one of the points in Figure 1 — is a policy question that could be decided by self-

governing academic associations, by companies or other organizations who we are asking

for data, by universities where we work, by IRBs in our organizations or those of data

providers, or by governments around the world that regulate our research. In other words,

the answer to this question is inherently political, and is thus an excellent topic for polit-

ical science research in its own right. We hope the scholarly community helps guide us

through this changing landscape.

Appendix G Understanding and Setting ε

How the privacy loss varies with epsilon depends on both the data (e.g., the uniqueness

of responses), and the background information an adversary has. Differential privacy

protects against the worst case scenario: the most extreme points that could appear in

the data, and an adversary with an arbitrary amount of outside information. If the worst

case scenario does not apply, then the privacy protection provided by a fixed epsilon in

practice will be relatively higher. We present a simple scenario that demonstrates this

logic in intuitive terms.

Suppose an adversary knows everything about a person (including that they were in

the survey, and that they were uniquely identified in the population by these variables).

The adversary would like to know the respondents’ answer to a binary question (e.g.,

how they voted in the referendum). The adversary therefore only has to pay attention to

two elements of the one-hot encoding: those that match the background information with

either a yes or a no vote. There are therefore 4 response patterns the adversary could

observe in these two elements: {(1, 1), (0, 0), (1, 0), (0, 1)}. Only the latter two could be

the truth. Suppose, without loss of generality, that the truth is (1, 0) and so we consider

the highest privacy loss scenario being that which produces (1, 0), i.e., neither element is
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flipped. Under RR, this happens with probability (1 - 1/(1 + exp(ε))2. In other words,

in the worst case scenario, the likelihood of the truth being (1, 0), given the observed DP

response pattern (1, 0) is (1− 1/(1 + exp(ε))2. This equates to a likelihood of 0.39 when

epsilon = 0.5, and 0.9 when epsilon = 3.

Above we described a worst case scenario where the realized noise was negligible and

the adversary had an extreme amount of background information. If the adversary knew

less, then the set of relevant cells in the histogram would be larger, and as a result the

actual privacy protection would necessarily be better even for the same epsilon.

This is a common situation: differential privacy protects respondents in the face of

any threat model. The differential privacy bound is thus the maximum possible privacy

leakage regardless of how much external information an attacker may have and regardless

of their motives, computational power, or skills. In contrast, the probability of any one real

threat actor that actually exists and actually violates someone’s privacy would typically

be considerably less than this bound.

Another way to think about this is that the privacy protection produced by a fixed

epsilon will vary by context, including the size of the data, the presence of uniquely

identifiable individuals in the data, and the background knowledge an adversary may rea-

sonably be expected to possess. As such, there is not one value of epsilon that will be

appropriate for all surveys. For most applications, we therefore recommend a simulation

study based (if possible) on similar publicly available data, to guide the choice of epsilon.

The simulation should involve assuming reasonable background information on the most

unique respondent and assessing the extent to which the DP noise obscures and limits the

possibility of learning more with high probability. (Of course, any amount of differential

privacy prevents an attacker from learning more about the respondent with certainty.) The

simulation study can also be used to assess the likely efficiency loss to DP, which should

help researchers balance the trade-off between privacy and utility.

Although a simulation of this nature is the best approach, the choice of epsilon can

be further guided by precedent and experience. In general, an epsilon below 1 is almost

always considered reasonably safe. Nevertheless many practical applications of DP use
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values much higher than this. It is also worth emphasizing that differentially private noise

decreases exponentially in epsilon. As such, we advise caution in using an epsilon as high

as in double digits, since this may entail very little noise in some circumstances.
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