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1
METHOD AND APPARATUS FOR
SELECTING CLUSTERINGS TO CLASSIFY A
PREDETERMINED DATA SET

BACKGROUND

Most academics and numerous others routinely attempt to
discover useful information by reading large quantities of
unstructured text. The corpus of text under study may be
literature to review, news stories to understand, medical infor-
mation to decipher, blog posts, comments, product reviews,
or emails to sort, audio-to-text summaries of speeches to
comprehend. The purpose is to discover useful information
from this array of unstructured text. This is a time-consuming
task and the information is increasing at a very fast rate, with
the quantity of text equivalent to that in Library of Congress
being produced in emails alone every ten minutes.

An essential part of information discovery from unstruc-
tured text involves some type of classification. However, clas-
sifying documents in an optimal way is an extremely chal-
lenging computational task that no human being can come
close to optimizing by hand. The task involves choosing the
“best” (by some definition) among all possible ways of par-
titioning a set of n objects (which mathematically is known as
the Bell number). The task may sound simple, but merely
enumerating the possibilities is essentially impossible for
even moderate numbers of documents. For example, the num-
ber of partitions of a set of merely 100 documents is 4.76e+
115, which is considerably larger than the estimated number
of elementary particles in the universe. Even if the number of
partitions is limited, the number is still far beyond human
abilities; for example, the number ways of classifying 100
documents into two categories is 6.33e+29.

In addition, the task of optimal classification involves more
than enumeration. Classification typically involves assessing
the degree of similarity between each pair of documents, and
then creating a set of clusters called a “clustering” by simul-
taneously maximizing the similarity of documents within
each cluster and minimizing the similarity of documents
across clusters. For 100 documents,

100
( ] =4.950
2

similarities need to be remembered while sorting documents
into categories and simultaneously optimizing across the
enormous number of possible clusterings.

This contrasts with a number somewhere between 4 and 7
(or somewhat more, if ordered hierarchically) items a human
being can keep in short-term working memory. Various algo-
rithms to simplify this process are still extremely onerous and
are likely to lead to sacrificing rather than optimizing. In
addition, this process assumes that humans can reliably assess
the similarity between documents, which is probably unreal-
istically optimistic given that the ordering of the categories,
the ordering of the documents, and variations in human coder
training typically prime human coders to respond in different
ways. In practice, inter-coder reliability even for well-trained
human coders classifying documents into given categories is
rarely very high.

Unfortunately, even fast computers cannot classify, at least
not without much forehand knowledge about the substance of
the problem to which a particular method is applied. That is,
the implicit goal of the prior art—developing a cluster analy-
sis method that works well across applications—is actually
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known to be impossible due to two theorems. A theorem
called the “ugly duckling theorem” holds that, without
assumptions, every pair of documents are equally similar and,
as a result, every partition of documents is equally similar.
Another theorem called the “no free lunch theorem™ holds
that every possible clustering method performs equally well
on average over all possible substantive applications. Thus,
any single cluster analysis method can only be optimal with
respect to some specific set of substantive problems and type
of data set.

Although application-independent clustering is impos-
sible, very little is known about the substantive problems for
which existing cluster analysis methods work best. Each of
the numerous known cluster analysis methods is justified
from a statistical, computational, data analysis, machine
learning, or other perspective, but very few are justified in a
way that makes it possible to know beforehand the data set
with which any one would work well. For example, for a
corpus of all blog posts about all candidates during the 2008

U.S. presidential primary season, there are many clustering
methods that might work, including model-based
approaches, subspace clustering methods, spectral

approaches, grid-based methods, graph-based methods,
fuzzy k-modes, affinity propagation, self-organizing maps
and many others. All these method and many other clustering
algorithms are clearly described in the literature, and most
have been implemented in available computer code, but very
few hints have been given or are known about exactly when
any of these methods would work best, well, or better than
other methods with this particular data set.

Consider for example, the finite normal mixture clustering
model, which is a particularly “principled statistical
approach”. This model is easy to understand, has a well-
defined likelihood, can be interpreted from a frequentist or
Bayesian perspective, and has been extended in a variety of
ways. However, the “ugly duckling” and “no free lunch theo-
rems” predict that no one approach, including this one, is
universally applicable or optimal across applications. Yet, a
search of prior art literature produces no suggestion whether
a particular corpus, composed of documents of particular
substantive topics, structures, or patterns is likely to reveal its
secrets best when analyzed with this method. The method has
been applied to various data sets, but it is seemingly impos-
sible to know when it will work before looking at the results
in any application. Moreover, finite normal mixtures are
among the simplest and, from a statistical perspective, most
transparent cluster analysis approaches available; knowing
which methods work for most other approaches will likely be
even more difficult.

Developing intuition for when specific cluster analysis
methods work best might be possible in some special cases,
but doing so for most of the rich diversity of available meth-
ods seems infeasible. Indeed, this problem occurs in unsuper-
vised learning problems almost by definition, since the goal
of'the analysis is to discover unknown facts. If it were known
beforehand something as specific as the model from which
the data were generated (up to some unknown parameters),
then the analysis would likely not be at an early discovery
stage.

SUMMARY

In accordance with the principles of the invention, a
method for selecting clusterings to classify a predetermined
numerical data set comprises five steps. First, a plurality of
known clustering methods are applied, one at a time, to the
numerical data set to generate a clustering for each method.
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Second, a metric space of clusterings is generated using a
metric that measures the similarity between two clusterings
generated by a pair of the clustering methods. Third, the
metric space is projected to a lower dimensional representa-
tion useful for wvisualization. Fourth, a “local cluster
ensemble” method is used to generate a clustering for each
point in the lower dimensional space, including points for
which no clusterings are generated by the known clustering
methods. Fifth, an animated visualization method uses the
output of the local cluster ensemble method to display the
lower dimensional space and to allow a user to move around
and explore the space of clusterings by displaying the clusters
in the clustering at each point in the lower dimensional space
and smoothly morphing from a clustering generated by one
clustering method to clusterings generated by other clustering
methods as different points in the space are selected. The
visualization aids a researcher in choosing one or a small
number of clusterings that are the most useful or informative
about the documents.

In one embodiment of the invention, the method is applied
to text documents by translating the documents to numerical
data that represents the documents before applying the
method.

In another embodiment, the metric used to generate the
metric space is, for two clusterings, the sum of the conditional
entropies of the two clusterings and is a variation of informa-
tion metric.

In still another embodiment the projection of the metric
space to a lower dimension space is performed with a Sam-
mon multidimensional scaling algorithm.

In a further embodiment a new clustering is created at each
point in the space of clusterings where no clusterings exists
from a weighted average of nearby existing clusterings. More
specifically, each weight is determined using a normalized
kernel, an averaged similarity matrix is created for the new
clustering with the weights and a clustering algorithm is
applied to the averaged similarity matrix.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a flowchart showing the steps in an illustrative
method for selecting clusterings in accordance with the prin-
ciples of the invention.

FIG. 2 is a block schematic diagram showing apparatus for
performing the method illustrated in FIG. 1.

FIG. 3 is an illustrative display of clusterings in accordance
with the method of the present invention.

DETAILED DESCRIPTION

In accordance with the principles of the invention, an illus-
trative method and apparatus for performing that method are
shown in FIGS. 1 and 2, respectively. The process begins in
step 100 and proceeds to step 102 where a non-numeric data
set 200 is provided, as indicated by arrow 202, to an optional
converter 204, which translates the non-numeric data to a
numerical data set, if necessary. This step is necessary only
when the items to be clustered are not numerical, such as text
documents; the inventive method can omit this step for any
data set consisting of numerical measures that represent a set
of'objects. For purposes of illustration, assume that the docu-
ments to be classified form a set of N text documents of
variable length. While text documents are used in the discus-
sion below, it would be apparent to those skilled in the art that
data other than text documents could be processed in the same
manner. In one illustrative embodiment, each document is
translated by transforming the text to lower case, removing all
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punctuation, and replacing each word with its stem. The order
of the word stems is then reduced by coding each document
with a set of W variables, each variable representing the
number of times a word stem is used in that document. The
result is that document i (i=1, . . ., N) is represented by a
W-vector of unigram counts.

While a simple term-document matrix in employed for the
illustrative embodiment, the method can easily accommodate
many different representations of documents. For example,
tf-idf and other term weighting representations could easily
be used. Likewise, the many variants of kernel methods—
procedures to produce a similarity metric between documents
without explicitly representing the words in a matrix—can
also be used.

Next, in step 104 of the inventive method, the data set 202
(or the converted data set) is applied as indicated by arrow 206
to a scheduler 208 that applies a plurality of clustering meth-
ods 210, one at a time (as indicated by arrow 212), to the
numerical set created in step 102 in order to generate a plu-
rality of clusterings 216 as indicated by arrow 214. In the
illustrative embodiment, the plurality of clustering methods
comprises every published clustering method that has been
applied to text and has been used in at least one article by an
author other than its developer. These clustering methods
include finite mixture models of normal distributions, finite
mixture models of multinomial distributions, and estimated
using an Expectation Maximization (EM) algorithm and a
variational approximation. The clustering methods also
include infinite mixture models, based upon the Dirichlet
process prior. Another group of methods is based upon the
eigenvectors of a modified similarity matrix, known as spec-
tral clustering. Standard methods for clustering are also
included, such as k-means, along with a variety of hierarchi-
cal clustering methods. Methods that simultaneously cluster
both unigrams and documents simultaneously are also
included, as are methods that identify exemplar documents
for each cluster, and methods that simultaneously embed the
documents in a lower dimensional space and then cluster.
These clustering methods are described in more detail in a
paper entitled “Quantitative Discovery from Qualitative
Information: A General-Purpose Document Clustering Meth-
odology”, J. Grimmer and G. King which is attached as
Appendix A hereto.

Although a large number of clustering methods have been
listed above, the inventive method can also operate with any
clusterings, however created, including machine-based or
human-created categorizations, flat or hierarchical, or soft or
hard. It can also operate with different clusterings for existing
methods with different tuning parameters, alternative prox-
imity measures among documents, or any other variation. The
only requirement is that each clustering “method” form
proper clusterings, with each document assigned either to a
single cluster or to different clusters with weights that sum to
one.

Coupled with this diversity of methods the inventive
method uses many ways to measure the similarity between
pairs of documents, which is an input to a subset of the
clustering methods used here. These include standard mea-
sures of distance (Manhattan, Fuclidean), angular based mea-
sures of similarity (cosine), and many others.

All of these clustering methods can be applied to the
numerical data by a straightforward software program that
sequentially runs each method. Such a software package
could, for example, be written in the R software language.

The next step 106 in the inventive method is to create a
metric space of clusterings by providing the clusterings 216 to
a metric space creator 220 as indicated by arrow 218. The
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metric space creator 220 uses a distance metric to measure
how similar one clustering is to another. The metric defines
the similarity between two clusterings based on how much
they agree that each pair of documents appear in the same
cluster. In the illustrative embodiment, such a metric is
derived by making several assumptions. The first assumption
is that the maximum possible distance between any two clus-
terings is equal to, or can be scaled to be equal to, the distance
between a clustering with all documents in one cluster and a
clustering with each document in its own cluster. The second
assumption is that clusterings with more pairwise agreements
(among all pairs of documents) are closer than those with
fewer. These first two assumptions preserve geometric prop-
erties of a function that counts pairwise disagreements.

A third assumption is that the distance between a clustering
and one nested within it (created by refining one of'its clusters
into a subset of clusters) equals the distance between the
refined subset and the amount of information that exists with
all refined documents in one cluster, with the remaining
unchanged clusters having no effect on the difference.
Finally, it is assumed that a maximum distance between clus-
terings is a function of the number of clusters.

The four assumptions narrow the choice of a possible met-
ric to one: a metric called the variation of information (VI)
metric, based on the shared or conditional entropy between
two clusterings. Further, it is a distance metric (even though
no explicit assumptions were made that the metric should be
a distance measure). The VI metric is defined by considering
the distance between two arbitrary clusterings, ¢, and c;.
Then, the proportion of documents assigned to cluster k in
method j and cluster k' in method j' is defined as:

N
pyy (ks k)=
=1

i

Cikjcik’j’ /N

Given the joint-entropy definition of shared information
between c; and ¢;' as:

K K

Hicj,cpy==" " ppy k. K )logp (k. k')

k=1t =1

the metric should determine the amount of information
cluster ¢, adds if we have already observed c;'. A natural way
to measure this additional information is with the conditional
entropy, H(c,Ic/)=H(c;,c;)-H(c;"), which is made symmetric
by adding together the conditional entropies, giving the met-
ric as:

d(c,¢/)=VI(c, ¢ )=H(c;lc;)+H(c)'Ic;)

The VI metric is described in more detail in an article
entitled “Comparing Clusterings: An Information Based Dis-
tance”, M. Meila, Journal of Multivariate Analysis 98(5):
873-895 (2007) which article is incorporated in its entirety by
reference.

In step 106, the metric is used to generate a metric space in
which to represent the various clusterings. The matrix of
distances between each pair of K clusterings can be repre-
sented with minimal error in a K dimensional space. How-
ever, in order to visualize this space, it is projected down to
two dimensions in step 108 by providing the metric space
generated by creator 220 to projector 224 as indicated by
arrow 222. As projection entails the loss of information, the
key is to choose a multidimensional scaling method that
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retains the most crucial information. For purposes of the
invention, small distances must be preserved most accurately,
as they reflect clusterings to be combined (in the next step
110) into local cluster ensembles. As the distance between
two clusterings increases, a higher level of distortion will
affect the results less. For the illustrative embodiment, the
Sammon multidimensional scaling algorithm was chosen for
the projection. This algorithm is disclosed in detail in an
article entitled “A Nonlinear Mapping for Data Structure
Analysis”, J. Sammon, [EEE Transactions on Computers
18(5):401-409 (1969), which article is incorporated in its
entirety by reference.

As applied to the inventive method, the Sammon algorithm
is derived as follows. Let ¢, be an NxK matrix (for document
i, i=1, ..., N, and cluster k, k=1, . . . , K, characterizing
clustering j), each element of which describes whether each
document is (0) or is not (1) assigned to each cluster (or for
soft clustering methods how a document is allocated among
the clusters, but where the sum over k is still one). For each
clustering j, the goal is to define its coordinates in a new
two-dimensional space X, =(x;;,X,,)), which is collected into a
Jx2 matrix X. The Euclidean distance between two cluster-
ings is used in this space, which for clusterings j and j' is
represented as d*““(x,x,,). The goal is to estimate the coordi-
nates X* that minimizes:

J
. ) 1 Z ™ (xj, xp) - dicj, cp )
X* = argminy T E—

d(cj, cjr)
> CJ
2 X dlej,cp) = T i

A

The latter equation encodes the goal of preserving small
distances with greater accuracy than larger distances. The
denominator contains the distance between two clusterings
d(c;,c;). This implies that distances that are small will be
given additional weight in the scaling, while large distances
will receive less consideration in the scaling, just as desired.

The next step 110 in the inventive method is to form “local
cluster ensembles” from the clusterings by providing the
two-dimensional space created by projector 224 to an inter-
polator 228 as indicated by arrow 226. A “cluster ensemble”
is a clustering produced by a specific type of averaging across
many individual clusterings as defined in an article entitled
“Cluster Ensembles: A Knowledge Reuse Framework for
Combining Multiple Partitions™, A. Strehl and G. Joydeep,
Journal of Machine Learning Research, 3:583-617 (2002).
This approach has the advantage of creating a new, potentially
better, solution but, for purposes of the invention, it has the
disadvantage of eliminating the underlying diversity of indi-
vidual clusterings. Accordingly, this approach is modified to
develop a new method of generating “local cluster
ensembles”, which are defined as new clusterings created at
any point in the space of clusterings from a weighted average
of nearby existing clusterings. This approach preserves the
diversity of the individual clusterings while still generating
new clusterings that average the insights of many different,
but similar, methods.

The procedure to define local cluster ensembles comprises
three steps. First, weights are defined. Denote x*=(x,*,x,*)
as the point in the metric space of clusterings at which to build
a local cluster ensemble. The new clustering defined at this
point is a weighted average of nearby clusterings with one
weight for each existing clustering in the space. The weight
for each existing clustering j is based on a normalized kernel,
as:
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J
w; = p(x*, 0'2)/2 P(Xoms 02)
=l

where p(x*,0°) is the height of the kernel (such as a normal
or Epanechnikov density) with mean x* and smoothing
parameter o°. The collection of weights for all T clusterings is
then w=(w, ..., Wg).

Second, given the weights, a similarity matrix is created for
the local cluster ensemble by using a voting approach, where
each clustering casts a weighted vote for whether each pair of
documents appears together in a cluster in the new clustering.
Thus, recall that ¢, is an NxK; matrix describing how docu-
ments are allocated to clusters for clustering j. The clusterings
from all J methods are then horizontally concatenated into the
NxK weighted voting matrix

2K

S

J
Viw) ={wicy, ... ,wyeyl} [whereK =
)

The result of the election is a new similarity matrix, which is
defined as S, =V(w)V(w)'. This calculation places priority on
those cluster analysis methods closest in the metric space of
clusterings.

Finally, the k-means clustering algorithm is applied to this
new averaged similarity matrix to produce a new clustering
defined at point x* in the metric space of clusterings.
Although the k-means clustering algorithm is used in the
illustrative embodiment, it can be replaced with any other
valid clustering algorithm at this stage and yield essentially
the same clustering.

The final step 112 is to provide a map or a geography of
clusterings, with nearby clusterings being more similar. This
geography organizes results and enables a researcher to
choose efficiently one or a small number of clusterings which
convey the most useful information, or which meet any other
criteria the researcher imposes.

The map is generated by providing the two-dimensional
projection of the metric space of clusterings to a display
screen 232 as indicated by arrow 230 where clusterings are
represented as separate points on a display screen. Each point
in the space corresponds to one clustering. Some discrete
points may be labeled to give structure to the space. For
example, clusterings produced by methods that have come
out of prior research may be labeled with the name of the
clustering method used to generate them. Other points in this
space correspond to new clusterings constructed with a local
cluster ensemble. The space is formally discrete, since the
smallest difference between two clusterings occurs when (for
non-fuzzy clustering) exactly one document moves from one
cluster to another. The process then finishes in step 114.

FIG. 3 illustrates one inventive visualization 300 of a space
of clusterings, when applied to one simple corpus of docu-
ments. In this illustrative example, the initial data set includes
the biographies of each U.S. president from Roosevelt to
Obama; the biographies were downloaded from the website
www.whitehouse.gov.

The two-dimensional projection of the space of clusterings
is illustrated in the central panel 302, with individual cluster-
ing methods labeled. Each clustering method corresponds to
one point in this space, and one clustering of the given docu-
ments. The space is formally discrete, since the smallest
difference between two clusterings occurs when (for non-
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fuzzy clustering) exactly one document moves from one clus-
ter to another, but an enormous range of possible clusterings
still exists: even this tiny data set of only 13 documents can be
partitioned in 27,644,437 possible ways, each representing a
different point in this space. In order to reduce the complexity
of the diagram only some points have been labeled. The
labeled points correspond to clustering methods that have
been used in prior research on text documents; other points in
this space correspond to new clusterings, each clustering
constructed as a local cluster ensemble.

Two specific clusterings 304 and 306, each corresponding
to one point as indicated by arrows 308 and 310, respectively,
in the central space appear to the left and right of the figure. In
these clusterings, labels have been added manually for clari-
fication. Clustering 1 (304), creates clusters of “Reagan
Republicans™ (Reagan and the two Bushes) and all others.
Clustering 2 (306) groups the presidents into two clusters
organized chronologically.

Although only two clusters have been shown for clarity, the
display is arranged so that a researcher can move a cursor over
the space of clusterings and select a single point. When the
point is selected, the corresponding clusters in the clustering
for that point appear in a separate window. The researcher can
then drag the selected point in any direction and watch the
clusters in the separate window morph smoothly from clus-
ters in one clustering to clusters in the adjacent clustering.

The inventive method offers a considerably larger space of
possible clusterings to search than the methods reported in the
literature, but the search space is, of course, still limited by the
existing clusterings. If, in applying the method, the results do
not seem sufficiently insightful, additional methods can be
used to explore some of the remaining uncharted space. Illus-
tratively, two methods are disclosed. First, clusterings from
the entire Bell space (the space of all possible clusterings of a
set of N objects) can be randomly sampled to generate addi-
tional clusterings. These additional clusterings can be added
to the original set of clusterings determined by the method
discussed above and the visualization can be rerun. As an
example, a two step method is used to take a uniform random
draw from the set of all possible clusterings. The first step in
this method is sample the number of clusters K from a mul-
tinomial distribution with probability Stirling(K,N)/Bell(N)
where Stirling(K,N) is the number of ways to partition N
objects into K clusters (this is generally known as the Stirling
number of the second kind).

Inthe second step, conditional on K, a random clustering is
obtained by sampling the cluster assignment for each docu-
ment i from a multinomial distribution, with probability 1/K
for each cluster assignment. If each of the K clusters in the
clustering does not contain at least one document, that clus-
tering is rejected and another clustering is obtained.

A second approach to expanding the clustering space
beyond the existing clustering algorithms and the local cluster
ensembles that are discussed above directly extends the exist-
ing space by drawing larger concentric hulls containing the
convex hull of the existing clusterings. To do this, a Markov
chain on the set of partitions is defined, starting with a chain
on the boundaries of the existing clusterings. This is done by
considering a clustering of the data c,. C(c;) is defined as the
set of clusterings that differ by exactly by one document: a
clustering ¢'; € C(c)) if and only if one document belongs to a
different cluster in c', than in c;. The first Markov chain takes
auniform sample from this set of partitions. Therefore, if ¢, &€
C(c,) (and ¢, is in the “interior” of the set of partitions) then
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p(cilep = VK
where N is the number of documents and K is the number of
clusters. If ¢'¢ C(c;) then p(c'lc)=0. To ensure that the

Markov chain proceeds outside the existing hull, a rejection
step is added: For all ¢, € C(c)),

’ 1 ’
plcilc)= W“Cj ¢ Convex Hull).

This rejection step ensures that the algorithm explores the
parts of the Bell space that are not already well described by
the included clusterings. A three stage process applied to each
clustering ¢, is used to implement this strategy. First, a cluster
to edit is selected with probability

==z

for each cluster j in clustering c,. Conditional on selecting
cluster j, a document to move is selected with probability

Z

Then, the document is moved to one of the other K1 clusters
or to a new cluster, so the document will be sent to a new
clustering with probability

1
e

While the invention has been shown and described with
reference to a number of embodiments thereof, it will be
recognized by those skilled in the art that various changes in
form and detail may be made herein without departing from
the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:

1. A method for selecting clusterings to classify a prede-
termined numerical data set, the method implemented in a
data processor having a memory and a display and compris-
ing:

(a) using the data processor to sequentially apply a plural-
ity of clustering methods to the numerical data set to
generate a plurality of clusterings and storing the clus-
terings in the memory;

(b) using the data processor and a metric that measures a
similarity between two clusterings generated by a pair of
the clustering methods to create a metric space of clus-
terings in the memory;

(c) using the data processor to project the metric space to a
lower dimensional space of clusterings;

(d) using the data processor to generate at each point in the
lower dimensional space which does not represent a
clustering, a clustering for that point based on nearby
clusterings; and

(e) displaying points representing the lower dimensional
space on the display.
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2. The method of claim 1 further comprising, before step
(a) using the data processor to convert non-numerical data to
a numerical data set that represents the non-numerical data.

3. The method of claim 2 wherein the non-numerical data
comprises a set of text documents.

4. The method of claim 3 wherein each of the clustering
methods applied in step (a) assigns each text document to one
or more clusters with weights that sum to one.

5. The method of claim 1 wherein the metric in step (b)
comprises, for two clusterings, the sum of the conditional
entropies of the two clusterings.

6. The method of claim 1 wherein the metric in step (b)
comprises a variation of information metric.

7. The method of claim 1 wherein step (c) is performed by
using the data processor to perform a projection on the metric
space with a Sammon multidimensional scaling algorithm.

8. The method of claim 1 wherein step (c) projects the
metric space to a two-dimensional space.

9. The method of claim 1 wherein step (d) comprises cre-
ating a new clustering at each point in the metric space of
clusterings where no clustering exists from a weighted aver-
age of nearby existing clusterings.

10. The method of claim 9 wherein each weight is deter-
mined using a normalized kernel and wherein step (d) further
comprises creating an averaged similarity matrix for the new
clustering and applying a clustering algorithm to the averaged
similarity matrix.

11. The method of claim 1 wherein the data processor has
a mechanism for selecting a point on the display and step (e)
comprises displaying clusters in a clustering corresponding to
the selected point.

12. The method of claim 1 wherein each point correspond-
ing to a clustering generated by one of the clustering methods
in step (a) is labeled on the display with the name of that
clustering method.

13. The method of claim 1 wherein step (a) further com-
prises adding additional clusterings to the plurality of clus-
terings by randomly sampling clusterings from the space of
all possible clusterings of a set of n objects and adding the
random samples to the plurality of clusterings.

14. The method of claim 1 wherein step (a) further com-
prises adding additional clusterings to the plurality of clus-
terings by extending the plurality of clusterings with Markov
chains to create a concentric hull of clusterings that contains
the convex hull of the plurality of clusterings.

15. Apparatus for selecting clusterings to classify a prede-
termined numerical data set comprising:

a memory;

a scheduler that sequentially applies a plurality of cluster-
ing methods to the numerical data set to generate a
plurality of clusterings and stores the clusterings in the
memory;

a data processor for applying a metric that measures a
similarity between two clusterings generated by a pair of
the clustering methods to pairs of clusterings to create a
metric space of clusterings in the memory;

a projector that projects the metric space to a lower dimen-
sional space of clusterings;

afill-in mechanism that generates at each point in the lower
dimensional space which does not represent a cluster-
ing, a clustering for that point based on nearby cluster-
ings; and

adisplay that displays points representing the lower dimen-
sional space.

16. The apparatus of claim 15 further comprising a text

converter that converts non-numerical data to a numerical
data set that represents the non-numerical data.
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17. The apparatus of claim 16 wherein the non-numerical
data comprises a set of text documents.

18. The apparatus of claim 17 wherein each of the cluster-
ing methods applied by the data processor assigns each docu-
ment to one or more clusters with weights that sum to one.

19. The apparatus of claim 15 wherein the metric used by
the data processor comprises, for two clusterings, the sum of
the conditional entropies of the two clusterings.

20. The apparatus of claim 15 wherein the metric used by
the data processor comprises a variation of information met-
ric.

21. The apparatus of claim 15 wherein the projector uses a
Sammon multidimensional scaling algorithm to perform the
projection.

22. The apparatus of claim 15 wherein the fill-in mecha-
nism comprises means for creating a new clustering at each
point in the space of clusterings where no clustering exists
from a weighted average of nearby existing clusterings.

23. The apparatus of claim 22 wherein each weight is
determined using a normalized kernel and the fill-in mecha-

10

12

nism further comprises means for creating an averaged simi-
larity matrix for the new clustering and means for applying a
clustering algorithm to the averaged similarity matrix.

24. The apparatus of claim 15 further comprising a mecha-
nism for selecting a point on the display and the display
comprises an area for displaying clusters in a clustering cor-
responding to the selected point.

25. The apparatus of claim 15 further comprising a mecha-
nism that adds additional clusterings to the plurality of clus-
terings by randomly sampling clusterings from the space of
all possible clusterings of a set of n objects and adding the
random samples to the plurality of clusterings.

26. The apparatus of claim 15 further comprising a mecha-
nism that adds additional clusterings to the plurality of clus-
terings by extending the plurality of clusterings with Markov
chains to create a concentric hull of clusterings that contains
the convex hull of the plurality of clusterings.

#* #* #* #* #*
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