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SYSTEM FORESTMATING A 
DISTRIBUTION OF MESSAGE CONTENT 

CATEGORIES IN SOURCE DATA 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application is a continuation of and claims the benefit 
of U.S. Application Serial No. 12/077.534, now U.S. Patent 
No. 8,180,717, filed Mar. 19, 2008, which claims the benefit 
under 35 U.S.C. S 119(e) of U.S. Provisional Application No. 
60/919,093, entitled “Extracting Systematic Social Science 
Meaning from Text,” filed Mar. 20, 2007. 

FIELD OF THE INVENTION 

This invention relates to the field of data mining systems. 
More particularly, it relates to a system and method for esti 
mating the distribution of message content among a set of 
categories, taking as input data from a source of unstructured, 
structured, or only partially structured source data. 

BACKGROUND 

Efforts to extract meaning from Source data—including 
documents and files containing text, audio, video, and other 
communication media—by classifying them into given cat 
egories, have a long history. In Europe in the late 1600s, for 
example, the Church kept track of the spread of nonreligious 
printed matter that it thought challenged its authority by clas 
Sifying newspaper stories and studying the resulting distribu 
tion. Some early prominent social scientists also did system 
atic textual analysis, including on the Social-psychological 
effects of reading different material, and on evidence for 
cross-national coordination in war propaganda. 

Content analyses like these have spread to a vast array of 
fields, with automated methods now joining projects based on 
hand coding. Systematic content analyses of all types have 
increased at least six-fold from 1980 to 2002. Moreover, the 
recent explosive increase in web pages, blogs, emails, digi 
tized books and articles, audio recordings (converted to text). 
and electronic versions of formal government reports and 
legislative hearings and records creates many challenges for 
those who desire to mine Such voluminous information 
Sources for useful meaning. 

Applicants have appreciated that, frequently, it is not the 
specific content of an individual element of Source data (e.g., 
a document in a set of documents or one or thousands of calls 
to a call center) that is of interest, but, rather, a profile or 
distribution of the data elements among a set of categories. 
Many conventional techniques rely on individual classifica 
tion of elements of source data (i.e., individual documents in 
a set of documents) to determine such a distribution. This is 
done in a variety of ways, including automated analysis of the 
elements and/or hand coding of elements by humans. Indi 
vidual classification of elements by hand coding may be done 
in any Suitable manner, such as by having workers review 
individual elements, then categorize the elements based on 
their review. For large data sets, prior attempts at both hand 
coding and automated coding of each elements have proven 
time-consuming and expensive. 

Conventional techniques for determining distribution of 
classifications have focused on increasing the percentage of 
individual elements classified correctly, and techniques for 
doing so, and then assuming an aggregate proportion of indi 
vidually classified elements is representative of a distribution 
in a broader population of unexamined elements. Unfortu 
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2 
nately, Substantial biases in aggregate proportions such as 
these can remain even with impressive classification accuracy 
of individual elements, and the challenge increases with the 
size and complexity of the data set, leaving these conventional 
techniques unsuitable for many applications. 

Accordingly, individual classification of elements of 
Source data—including by automated analysis or hand cod 
ing—on a large Scale is infeasible. Indeed, large-scale 
projects based solely on individual classification have 
stopped altogether in some fields. Applicants have appreci 
ated, however, that there is a growing desire for performing 
analyses, including classification, of source data, and, corre 
spondingly, a fast-growing need for automated methods for 
performing these analyses. 

Accordingly, there is need for improved techniques for 
mining a set of data to determine useful properties, including 
a distribution of data elements among a set of categories of 
interest. 

SUMMARY 

In one embodiment, there is provided a computer-imple 
mented method, the method comprising acts of receiving as 
input from a digital data source storing digital content a 
categorization of a first set of elements among a plurality of 
categories, each of the first set of elements being classified in 
one of the plurality of categories such that the first set has a 
first distribution of elements across categories; calculating an 
estimated distribution of elements in a second set among the 
plurality of categories without constraining the estimated 
distribution of elements in the second set to be equal to the 
first distribution of elements across categories of the first set; 
and outputting the estimated distribution of elements in the 
second set. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as a first input from a computer storage medium storing 
digital content a categorization of a first set of elements 
among a plurality of categories, each of the first set of ele 
ments being classified in one of the plurality of categories 
such that the first set has a first distribution of elements across 
categories; receiving as a second input a second set of ele 
ments; calculating an estimated distribution of the elements 
in the second set among the plurality of categories to be 
different than the first distribution of the elements in the first 
set; and outputting the estimated distribution of elements in 
the second set. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as input from a computer storage medium storing digital 
content a categorization of a first set of elements among a 
plurality of categories; calculating an estimated distribution 
of elements in a second set among the plurality of categories, 
wherein each of the first and second sets has a content distri 
bution of content of elements, and wherein calculating is 
performed without constraining the second content distribu 
tion of content of the elements in the second set to be equal to 
a first content distribution of content of the elements in the 
first set; and outputting the estimated distribution of elements 
in the second set. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as input from a computer storage medium a categorization 
of a first set of elements among a plurality of categories, the 
first set of elements having a distribution among the plurality 
of categories; calculating an estimated distribution of ele 
ments in a second set among the plurality of categories by 
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applying only a single constraint between the first and second 
sets, the single constraint requiring that for a plurality of word 
stem profiles occurring in the first and second sets of ele 
ments, a prevalence of each of the word stem profiles in the 
elements in each of the categories is substantially similar for 
the first and second sets of elements; and outputting the esti 
mated distribution of elements in the second set. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as input a categorization of a first set of elements among 
a plurality of categories, the first set of elements having a first 
distribution among the plurality of categories; creating a first 
estimated distribution of elements in a second set among the 
plurality of categories by applying a first process for calcu 
lating the first estimated distribution of elements in the second 
set among the plurality of categories; modifying the first 
estimated distribution of elements in the second set among the 
plurality of categories to create a second estimated distribu 
tion of elements in the second set by applying information 
relating to estimated misclassifications performed by the first 
process on the second set of elements; and outputting the 
second estimated distribution. 

In another embodiment, there is provided a computer 
implemented method comprising acts of receiving as first 
input a categorization of a first set of elements among a 
plurality of categories, the first set of elements having a dis 
tribution among the plurality of categories; receiving as sec 
ondinput a first estimated distribution of elements in a second 
set among the plurality of categories that was created by 
applying a first process for estimating a distribution of ele 
ments in the second set among the plurality of categories; 
modifying the first estimated distribution of elements in the 
second set among the plurality of categories to create a second 
estimated distribution of elements in the second set by apply 
ing information relating to estimated misclassifications per 
formed by the first process on the second set of elements; and 
outputting the second estimated distribution. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as input a categorization of a first set of elements among 
a plurality of categories, each of the first set of elements being 
classified in one of the plurality of categories such that the 
first set has a first distribution of elements across categories; 
calculating an estimated distribution of elements in a second 
set among the plurality of categories without constraining the 
estimated distribution of elements in the second set to be 
equal to the first distribution of elements across categories of 
the first set; calculating a probability that a particular element 
of the second set is in a particular category; and outputting the 
probability that a particular element is in the particular cat 
egory. 

In another embodiment, there is provided a computer 
implemented method, the method comprising acts of receiv 
ing as first input a categorization of a first set of elements 
among a plurality of categories, each of the first set of ele 
ments being classified in one of the plurality of categories 
such that the first set has a first distribution of elements across 
categories; receiving as second input an estimated distribu 
tion of elements in a second set among the plurality of cat 
egories calculated without constraining the estimated distri 
bution of elements in the second set to be equal to the first 
distribution of elements across categories of the first set; 
calculating a probability that a particular element of the sec 
ond set is in a particular category; and outputting the prob 
ability that a particular element is in the particular category. 

In another embodiment, there is provided a computer 
implemented method comprising acts of receiving as input an 
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4 
estimated distribution of elements in a set among a plurality 
of categories calculated without individually classifying ele 
ments in the set calculating a probability that a particular 
element of the set is in a particular category; and outputting 
the probability that a particular element is in the particular 
category. 

In another embodiment, there is provided an apparatus 
comprising at least one computer-readable medium encoded 
with computer-executable instructions which, when 
executed, carry out the methods and techniques described 
herein; and at least one processor adapted to execute the 
computer-executable instructions. 

In another embodiment, there is provided at least one com 
puter-readable medium encoded with computer-executable 
instructions which, when executed, carry out the methods and 
techniques described herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the drawings: 
FIG. 1 is a flowchart of a generic process for estimating a 

proportional distribution of elements in source data without 
performing individual classification of all elements; 

FIG. 2 is a flowchart of a generic process for performing 
correction of results of a conventional process for performing 
aggregation of individual classification; 

FIG.3 is a flowchart of an exemplary process for perform 
ing preprocessing text data that may be used by embodiments 
of the invention which analyze text to perform data abstrac 
tion; 

FIG. 4 is a flowchart of an exemplary process that may be 
implemented by embodiments of the invention to perform 
correction of results of a conventional process for performing 
aggregation of individual classification; 

FIG. 5 is a flowchart of an exemplary process that may be 
implemented by embodiments of the invention for estimating 
a proportional distribution of elements in Source data without 
performing individual classification of all elements; 

FIG. 6 is a flowchart of a exemplary process that may be 
implemented by embodiments of the invention for determin 
ing individual classifications of elements of source data; 

FIG. 7 show simulated data of proportions of observations 
in a labeled and population set (in the left panel) and propor 
tion with a feature present (in the right panel); 

FIG. 8 shows a comparison of results of individual classi 
fication by a conventional Support vector machine as com 
pared to techniques operating according to some of the prin 
ciples discussed herein; 

FIG. 9 shows differences between labeled and population 
element sets that would bias conventional Supervised learning 
estimators; 

FIG. 10 depicts how despite the differences in P(D) and 
P(S) between the labeled and test sets shown in FIG. 6, a 
nonparametric estimator according to one embodiment of the 
invention remains approximately unbiased and statistically 
consistent; 

FIG. 11 shows several plots giving the estimated element 
category frequencies (vertically) by the actual frequencies 
(horizontally): 

FIG. 12 displays the accuracy of the nonparametric method 
in recovering the distribution of ordered categories for movie 
reviews and university websites: 

FIG. 13 shows an estimate of bias in the categorization 
techniques employed by embodiments of the invention by 
number of individually-classified elements; 

FIG. 14 shows a graph of the average root mean square 
error of elements misclassified by number of individually 
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classified elements of both a conventional method and a 
method according to one embodiment of the invention; 

FIG. 15 shows a flowchart of an exemplary process for 
performing compensation on misclassifications in a labeled 
set of elements of data; 

FIG.16 shows an analysis of the proportion of elements in 
a category as the element distributions are adjusted according 
to one implementation of a simulation-extrapolation algo 
rithm; 

FIG. 17 shows an analysis of the proportion of elements in 
other categories as element distributions are adjusted accord 
ing to one implementation of a simulation-extrapolation algo 
rithm; 

FIG. 18 shows validation in China of the verbal autopsy 
methods with multiple causes of death proposed by King and 
Lu (2007) (referenced below): 

FIG. 19 shows validation in Tanzania of the verbal autopsy 
methods with multiple causes of death proposed by King and 
Lu (2007) (referenced below): 

FIGS. 20A and 20B are schematic views of interactions of 
Software modules that may implement some of the techniques 
described herein; 

FIG. 21 is a schematic view of an illustrative computer 
apparatus which may be used in accordance with embodi 
ments of the invention; and 

FIGS. 22 and 23 show flowcharts of calculating distribu 
tions of elements over input data in accordance with embodi 
ments of the present invention. 

DETAILED DESCRIPTION 

Conventional methods of automating analysis of source 
data all suffer from several distinct disadvantages. Classify 
ing every individual element with total or near total accuracy, 
is, as a practical matter, infeasible with large data sets. As a 
result, sampling is often used instead. Some conventional 
methods, for example, require that a purely random sample be 
selected and examined. Examination of this sample will yield 
certain conclusions, and these conclusions are then assumed 
to apply to the broaderset. As used herein, a "random sample 
is a statistical term of art meaning that the particular Subset of 
elements selected for examination has characteristics which 
closely mimic the characteristics of the broader element set. 
Selecting such a purely random Subset is infeasible in most 
applications, but many techniques rely on an untenable 
assumption that Such a sample has been procured and that it 
provides a statistically valid indication of the distribution of 
elements in the set as a whole. However, these techniques are 
inherently flawed if the sample is not truly random or if it is 
not large enough to reduce the margin of error to desired 
limits, or if classifications are in error. Some alternative con 
ventional techniques attempt to bolster the assumptions by 
attempting to maximize the percent of individual elements 
correctly classified. However, imperfection leaves open the 
possibility of Substantial estimation bias for the aggregate 
proportions of interest when the estimation method maxi 
mizes its capacity to predict each individual element’s cat 
egorization as opposed to the overall distribution of elements 
across categories. 

Applicants have further appreciated that the aim of provid 
ing accurate estimates of the proportion of elements in cat 
egories, particularly with attractive statistical properties, has 
not even been a goal of most conventional work in automated 
methods for predicting classification of elements of input 
Source data. Instead, most conventional work, rather than 
estimating a proportion of elements in categories, has instead 
focused on accurately classifying a plurality of individual 
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6 
elements to determine an aggregate distribution in a set of 
labeled elements, then assuming the distribution holds true 
for a set of unanalyzed, unlabeled elements. As described 
above, there are significant, inherent problems with this 
approach, particularly with large data sets. 

In contrast with these conventional approaches, the tech 
niques disclosed herein are directed to a new method of 
computerized content analysis that gives “approximately 
unbiased and statistically consistent estimates' of a distribu 
tion of elements of structured, unstructured, and partially 
structured source data among a set of categories by analyzing 
a distribution of small set of individually-classified elements 
in a plurality of categories and then using the information 
determined from the analysis to extrapolate a distribution in a 
larger population set. As discussed in greater detail below, 
this extrapolation is performed without constraining the dis 
tribution of the unlabeled elements to be equal to the distri 
bution of labeled elements, nor constraining a content distri 
bution of content of elements in the labeled set (e.g., a 
distribution of words used by elements in the labeled set) to be 
equal to a content distribution of elements in the unlabeled 
set. Not being constrained in these ways allows the estimation 
techniques described herein to provide distinct advantages 
over conventional aggregation techniques, as discussed in 
greater detail below. 

Embodiments of the method may be described below with 
reference to methods described by Daniel Hopkins and Gary 
King in “Extracting systematic Social science meaning from 
text.” published March, 2008, and available at http://gking. 
harvard.edu/ and in the file of this application in the United 
States Patent and Trademark Office, and incorporated herein 
by reference. 

Structured, unstructured, and partially structured source 
data that may be analyzed by embodiments of the invention 
may comprise any Suitable type or types of data in any Suit 
able format. For example, elements of the source data may 
comprise textual, audio, and/or video data encapsulated in 
files, streams, database entries, or any other Suitable data 
format. The elements of the source data may be supplied by or 
retrieved from any suitable source. Such as structured or par 
tially structured sources including customer feedback results 
Submitted by customers or Surveying companies (which may 
indicate, for examples, ratings from 1-10; ratings from 
“good to “bad” or other ordered categories; ordered labels 
such as “red.” “green.” “blue” or others; and/or unstructured 
text Such as general comments), or retrieved from unstruc 
tured sources including various web sites on the Internet Such 
as blogs ("web logs’) including text, audio, and/or video blog 
entries. The data to be analyzed may be associated with any 
Suitable topic(s) or Subject(s), including information related 
to marketing or advertising data, consumer products and Ser 
vices, financial services, politics or government, intelligence, 
healthcare and pharmaceuticals, education, and nonprofits, 
among others. The information to be analyzed may include 
opinions expressed by individuals, and the techniques 
described herein may be useful in determining an overall 
distribution of opinions in various categories (i.e., percent 
ages of opinions in a "positive' and a “negative' categories, 
or any other Suitable category or categories using any Suitable 
stratification scheme) that may be used in responding to feed 
back received. For example, if the techniques described 
herein determine from Source data that a company's product 
is, on the whole, being negatively described in blog entries, 
then the company may redesign the product or change a 
marketing strategy. Accordingly, the techniques described 
herein may be useful for providing information to brand 
managers, product managers, account managers and sales 
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teams, marketing departments, politicians, government agen 
cies, investors and fund managers, universities, business 
development teams, strategy and executive teams, agents for 
high profile individuals (e.g., publicists), and consumers, 
among others. 
One aspect of the invention, embodying at least one object, 

is directed to a system and method that receives as input data 
a potentially large set of elements of source data—examples 
of which are described below—and a seed set of data from the 
same source (which may or may not be a Subset of the poten 
tially large set) which has been individually classified into a 
selected set of mutually exclusive categories. The seed set 
may, but need not, be a random sample from the large set. 
With this information, an exemplary approach in accordance 
with one embodiment of the invention gives approximately 
unbiased and statistically consistent estimates of the propor 
tion of all the elements in each category without individually 
classifying the elements of the source data other than the seed 
Set. 

Another aspect of the invention is directed to a system and 
computer-implemented method for improving the accuracy 
of the results of conventional classification techniques. For 
example, a process may receive as input an estimated distri 
bution of elements in categories from a conventional aggre 
gation technique, and perform correction of the estimated 
proportions of elements in categories to determine a more 
accurate distribution of elements in the categories. 

Another aspect of the invention is directed to a system and 
computer-implemented method for estimating an individual 
classification for elements in an unlabeled set of elements of 
Source data. Some implementations of this technique may 
accept as input information determined from an individual 
classification of elements in a labeled set of elements, and use 
the information to perform an estimation of a category for a 
particular element in an unlabeled set of elements of Source 
data. Such a technique may be used in connection with, or as 
an alternative to, techniques described hereinforestimating a 
distribution of an unlabeled set of elements in categories 
without performing individual classification of the unlabeled 
set of elements. 

It should be appreciated that the various aspects of the 
invention discussed above may be implemented alone or in 
any suitable combination with one another, as embodiments 
of the invention may implement any one or aspects of the 
invention. 

It should be appreciated that, as used herein, an estimatoris 
a computer-implemented procedure, algorithm, or method 
that is applied to a set of structured or unstructured source 
data (e.g., text documents) and yields a set of "estimates' 
(e.g., estimated distribution of elements in categories). A 
“statistically consistent estimator is one which, when 
applied to a set of data, converges to the true value being 
estimated as the sample size gets larger. An “approximately 
unbiased estimator is one which, on average across repeated 
samples drawn from the same population, produces an esti 
mate that is equal to the true value being estimated. 

It should also be appreciated that any suitable technique 
may be implemented for providing the source data to com 
puters operating according to the principles described herein. 
For example, the source data may be information which was 
Submitted to an organization (or a digitized version of Sub 
mitted information) in the form of comment cards, phone 
conversations, e-mails, Voice mail messages, or any other 
format, and/or the source data may be information which was 
retrieved by an organization in the form of random Surveys or 
Surveys of persons or users fitting a particular category (e.g., 
known users of a productor people in a certain demographic). 
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8 
Alternatively or additionally, the source data may be retrieved 
by an organization or a process from publicly-accessible 
information, Such as by retrieving published works such as 
books, articles, papers, and/or web pages. Retrieving pub 
licly-accessible information may be done in any Suitable 
manner, such as by using any Suitable web crawler. 
The techniques described herein may be implemented in of 

various computing systems, examples of which are described 
in greater detail below. Such systems generally involve the 
use of Suitably-configured data processing equipment to 
implement a number of modules, each providing one or more 
operations needed to complete execution of Such techniques 
or methods. Each module may be implemented in its own 
way; all need not be implemented the same way. 
As an example of Such implementations, the modules may 

be implemented in a computing apparatus operating as one or 
more web servers, which may act to accept input from client 
computers, receive necessary information from a digital Stor 
age source (e.g., local and/or remote computer storage media 
Such as a register, memory, or hard disk, a stream of data from 
an input device or over a network, or from another process 
executing on the web server), and provide information includ 
ing web pages to client computers. In one implementation of 
Some of the techniques described herein, a server may imple 
ment a web crawler, accepting as input one or more source 
URLs of web pages to begin crawling, and return to the server 
the text of web pages found at the URLs. The web crawler 
may then proceed to retrieve the text of web pages to which 
the web pages of the original URLs linked, and the text of the 
web pages to which the second set of web pages linked, and so 
on to whatever limit is imposed, to retrieve a data set of 
information. The text of the data set may then be filtered, 
preprocessed, and analyzed according to any Suitable tech 
nique, and estimations of a distribution of the elements (i.e., 
web pages) in the data set may be calculated according to one 
or more of the techniques described herein. The estimations 
may then be provided to a user of a client computer in a 
desired form, Such as a web page comprising an analysis of 
the estimations, such that the user may review the information 
and make decisions based on it. For example, if the source 
data set is filtered such that web pages that do not discuss a 
particular product X are eliminated from the data set, the 
analysis may yield a set of estimations of how the web pages 
describe productX across categories (e.g., what percentage of 
web pages describe it as a good product, and which describe 
it as a bad product). The estimations may then allow the user 
to, for example, determine whether product X is well-re 
garded in the market or if changes need to be made to the 
product and/or to marketing strategies. 

FIG. 1 shows an exemplary process 100 which may imple 
ment some, but not necessarily all, of the principles described 
herein. It should be appreciated that process 100 is merely 
illustrative of the types of processes that may be implemented 
by Some embodiments, and that other processes may be 
implemented. 
As shown generally in FIG. 1, a process 100 implementing 

some of the principles disclosed herein may, at block 102. 
receive from a digital storage medium an individually classi 
fied Small set (e.g., Subset of the source data), with the clas 
sification based on a set of chosen categories. Each datum is 
classified into a single category. This may be done in any 
Suitable manner, including by any Suitable automated tech 
niques for performing individual classification and/or by 
hand coding. (Hand coding, as it involves the exercise of 
human judgment, is outside the scope of this invention. Thus, 
block 102 may be considered optionally included in some 
embodiments.) While in some embodiments of the invention 
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elements of the Small set may be chosen for having specific 
qualities, embodiments of the invention may operate with any 
Suitable Small set, including a randomly- or pseudo-ran 
domly-selected Small set, and any Small set having character 
istics that differ in dramatic but specific ways from charac 
teristics of the broader population of source data. 

In act 104, an estimation module receives the individual 
classifications determined in act 102 and, in act 106, analyzes 
the remaining elements in the Source data (i.e., the elements 
not classified in act 102) without determining individual clas 
sifications for these remaining elements. In act 108, the esti 
mation module outputs a distribution of elements among 
categories that may be used in analyzing and responding to 
the Source data. For example, as discussed above, if the Source 
data is a plurality of customer opinions, a product designer 
may use the distribution of opinions to redesign a product or 
redesign a marketing strategy. 

Alternative processes for implementing the techniques 
shown in FIG. 1 are described in greater detail below in 
connection with, for example, FIG. 5. 
A second exemplary process for implementing the tech 

niques described herein is shown in FIG. 2 as process 200. As 
before, it should be appreciated that process 200 is merely 
exemplary of the types of processes which may be imple 
mented in accordance with the principles described herein, 
and that other processes are possible. 

Process 200 implements a technique for performing cor 
rection of the distribution estimations of a conventional clas 
sification process. Process 200 begins in block 202, wherein 
an estimation module receives as input an aggregation of 
individual classifications performed by Such a conventional 
classification method. In block 204, the estimation module 
estimates misclassification probabilities by examining a test 
set of elements in a labeled set of elements in the input. In 
block 206, the misclassification estimations of block 204 are 
then used to perform correction on the estimates accepted as 
input in block 202, and the process ends. Alternative pro 
cesses for implementing the techniques shown in FIG. 2 are 
described in greater detail below in connection with, for 
example, FIG. 4. 

Embodiments of the invention work without parametric 
modeling assumptions and even when the Subsample differs 
dramatically from the target population in both the language 
used and the element category frequencies. Although hand 
coding with much larger numbers of elements is infeasible, 
embodiments of the invention may scale up easily. Embodi 
ments of the invention may also go a step further and correct 
for the less-than-perfect levels of inter-coder reliability com 
monly seen in applications. This latter correction may involve 
more uncertainty than the first methodological advance, but 
estimates from it will normally be preferable even compared 
to estimates from directly individually classifying all ele 
ments in the population. 

These advances were enabled, in part, by Applicants 
appreciation that one of the common goals in previous 
approaches that was of interest to scholars in computer sci 
ence, statistics, text data mining, and computational linguis 
tics was not of much interest for many Social Science appli 
cations, and thus could be dropped. That is, embodiments of 
the invention estimate the proportion of elements within each 
category the userspecifies, but do so without the intermediate 
step of classifying individual elements and then calculating 
the proportion within each category. This is an important 
limitation for Some purposes, but not for most social Science 
applications. To be clear, individual-level classifications, 
when available, provide more information than aggregates, 
since they sometimes enable one to aggregate in unantici 
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pated ways or serve as variables in regression-type analyses, 
but the quantities of real interest to social scientists rarely 
seem to be these individual classifications. It appears that a 
similar point also applies to related academic areas. 

Thus, for example, Some embodiments of the invention 
may not be useful in to Sorting constituents’ letters to a mem 
ber of Congress by policy area, but may be useful for accu 
rately estimating the distribution of letters across policy 
areas—which makes the method useless in helping a legisla 
tor route letters to the most informed staffer to draft a 
response, but would be useful in helping the legislator track 
intensity of constituency expression by policy. Similarly, 
Some embodiments of the invention cannot classify indi 
vidual email as spam or not, but could accurately estimate the 
fraction of email that is spam which makes the method less 
useful as a spam filter but more useful for understanding the 
sociology of the Internet. Moreover, embodiments of the 
method will normally give more accurate estimates of the 
aggregate proportion of letters by policy, or emails which are 
spam, or customer opinions that are positive, than conven 
tional techniques which sort the predictions of the best avail 
able classification techniques into categories and compute 
proportions. 

Although the availability of textual material of interest to 
Social Scientists is growing dramatically, learning how to 
analyze these texts is not always straightforward. Many of the 
steps required are more difficult than they seem at first, and 
few are discussed in much detail in the literature. 

In the examples given below, Applicants describe using the 
techniques described herein to analyze blogs for determining 
distribution of opinions on selected topics. However, it should 
be appreciated that embodiments of the invention are not 
limited to analyzing blogs or any other specific type of Source 
data, and can be as easily applied to any set of Source data, 
including natural language text documents such as speeches, 
open ended Survey responses, multiple choice and other 
structured Survey or similar responses, candidate web sites, 
congressional legislation, judicial opinions, newspaper edi 
torials, company reports, private diaries, treaties, scholarly 
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above. 
Description of Blogs 

Blogs are postings on the Web from time to time, in the 
form of a diary (i.e., dated entries), usually listed in reverse 
chronological order. Anyone may create and own a blog (for 
free), and she may post on it whatever she wishes and com 
pletely determine the content of what is seen by readers. A 
minority of blogs are read widely whereas others are read by 
only a few close friends or associates, but it is the opinions 
expressed that are interest in this example, not the readers or 
readership. Some blogs allow comments on the posts from 
others, but the focus in this example is on the main posts by 
the blog author. Posts sometimes include only a sentence or 
two, and typically are about a paragraph in length, but some 
times go on for several printed pages. The growth of blogs has 
been explosive, from essentially none in 2000 to estimates in 
2007 that ranged from 39 to 100 million worldwide. 

These developments have led to the widespread view that 
“we are living through the largest expansion of expressive 
capability in the history of the human race' (Carr, D. "24 
Hour Newspaper People.” New York Times, 15 Jan., 2007)) 
Blogs give individuals the ability to publish their views to a 
potentially worldwide audience for free, and at the same time 
give social scientists the ability to monitor the views oftens of 
millions more people on a daily basis than any previous 
technology in history. What was once studied with a single 
Snapshot of a few thousand brief Survey responses can now be 
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studied with the daily views of millions of people. Blogs 
capture what might have been in an earlier era hallway con 
Versations, Soapbox speeches, musings of individuals in their 
private diaries, or purely private thoughts, and their ease of 
use encourages many more, and more detailed, expressions of 
individual opinions than ever before. 

Exemplary applications, described below, of the tech 
niques described herein make reference to an exemplary 
implementation of one embodiment directed to the ongoing 
national conversation about the American presidency, includ 
ing specifically posts that are all or in part about President 
George W. Bush or any of the major contenders for the 2008 
major party presidential nominations. Conversations like 
these have gone on throughout American history, but the 
development of this new technology (blogs) means that for 
the first time ordinary Americans can participate, without 
even having to stand on the Soapbox in their public squares. In 
the examples described below, the techniques described 
herein may be useful in measuring, on a daily basis, how 
positive or negative the average sentiment is in the “blogo 
sphere' (a term referring to a collection of blogs) about each 
politician on a list. This information may then be useful for 
politicians in tracking Voter responses to the positions they 
take, such that they may focus their efforts on a particular 
topic or topics in response to the data (e.g., if results show that 
a large proportion of blog authors believe a candidate to be 
weak on national security, the candidate may tailor his or her 
campaign to demonstrate strength in this area). Just like Sur 
vey researchers, this embodiment of the invention has no 
special interest in the opinions of any specific individual, only 
the Social science generalization about each politician, which 
might translate roughly into “the word on the street. In 
essence, this embodiment of the invention allows users to 
create a type of “daily opinion poll that summarizes the 
views of people who join the national conversation to express 
an opinion. 

Previous efforts to measure sentiments from the national 
conversation include more limited samples, such as studies of 
newspaper editorials or Sunday morning talk shows. Embodi 
ments of the invention, rather than focusing exclusively on 
blogs, could alternatively or additionally analyze these infor 
mation sources, although many of the individuals involved— 
including politicians, journalists, and pundits—now also 
have their own blogs. 

It should be appreciated, however, that embodiments of the 
invention are not limited to the above goals or to the exem 
plary implementations described below in conjunction with 
the blog research example, as embodiments of the invention 
may be implemented in any suitable manner to determine the 
proportional distribution of any suitable collection of source 
data among any desired categories. 
Overview of Application of these Techniques to Blogs 

In one example, posts from highly political people who 
frequently blog about politics are collected, as are the post 
ings of ordinary Americans who normally blog about garden 
ing or their love lives but choose to join the national conver 
sation about the presidency for one or more posts. Bloggers 
opinions are counted when they decide to post and not other 
wise. In this example (and in other, similar applications of the 
techniques described herein), the specific goal may be to 
determine an overall distribution of the elements of the source 
data received by an estimation module operating according to 
the techniques described herein into one of the following 
seven categories: 
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Label Category 

-2 extremely negative 
-1 negative 
O neutral 
1 positive 
2 extremely positive 
NA no opinion expressed 
NB not a blog 

Although the first five categories may be logically ordered, 
the set of all seven categories has no necessary ordering 
(which, e.g., rules out innovative approaches like wordscores, 
which at present requires a single dimension). The NA cat 
egory is a logical distinction that is separate from a neutral 
expressed opinion (category 0). Typically, though not neces 
sarily, bloggers often write to express opinions; as a result, 
category 0 is not common although it and NA occur com 
monly if the blogger has it in mind to write primarily about 
Something other than the politician studied herein. Category 
NB was included to ensure that the category list was exhaus 
tive, which may be important in Some applications of the 
principles described herein given the diverse nature of the 
Web sites which may be input to the estimation module when 
techniques such as conventional Web crawlers (i.e., computer 
programs which automatically retrieve publicly-accessible 
Web pages by, for example, downloading a Web page and 
then downloading all Web pages to which the first Web page 
links) are used to provide the input to an estimation module. 

This coding scheme represents an especially difficult test 
case both because of the mixed types included in the exem 
plary categorization scheme and since computer Scientists 
have found that “sentiment categorization is more difficult 
than topic classification’ (Pang, Bo, Lillian, Lee, and Shiva 
kumar Vaithyanathan. 2002. “Thumbs Up? Sentiment Clas 
sification using Machine Learning Techniques.” Proceedings 
of the Conference on Empirical Methods in Natural Lan 
guage Processing, pp. 79-86). In fact, blogs generally seem 
like a difficult case for automated content analysis, since the 
language used ranges from the Queen's English (or equiva 
lent in another language) to very informal Vernacular and 
abbreviations, often including poor grammar, Such as “my 
crunchy gf thinks dubya hid the wmd’s and overall tends 
strongly toward the informal. In addition, blogs have little 
common internal structure, and nothing like the inverted 
pyramid format of newspaper columns. They can change in 
tone, content, style, and structure at any time, and the highly 
interactive nature of bloggers commenting on each other's 
blogs sometimes makes trends spread quickly through the 
blogosphere. 

Although in Small quantities or large amounts of time 
individual elements can be individually classified (using hand 
coding or automated methods), using individual classifica 
tion to track large numbers of opinions in real time is infea 
sible. A random sample could be drawn, but since opinions 
Sometimes change rapidly over time, it would be necessary in 
Some scenarios to draw a different sample very frequently— 
e.g., daily. Individually classifying Sufficient numbers to pro 
vide Such as random sample each day or week is essentially 
impossible; either resource constraints would bind, or train 
ing quality would be sacrificed with larger numbers of coders. 
And, even if possible, the time of those who would serve as 
coders, and resources used to pay them, can be redirected if 
using embodiments of the systems and methods taught 
herein. 
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Preprocessing of Source Data in Embodiments of the Inven 
tion 

To analyze text statistically (such as the blog text of this 
example, or other text including transcripts of audio and 
Video sources in other applications of the techniques 
described herein), in some embodiments of the invention 
natural language may be represented as numerical variables. 
For example, in one embodiment, the variable of interest 
Summarizes an entire element of the Source data (e.g., a blog 
post in the running example) with a category into which it 
falls. (Although a blog may have content that could justify its 
classification into multiple categories, it is assumed, for sim 
plicity of implementation but not to exclude the use of mul 
tiple categories in other embodiments, that a blog is classified 
into only one category.) This may be done statistically, as a 
function of numeric variables that are coded directly from the 
text. To code these additional variables, four additional steps 
may be performed in Some implementations of the techniques 
described herein, each of which work without human input 
and all of which are designed to abstract the complexity of 
text to the essentials needed for further analysis. 
A source module in the running example (i.e., analysis of 

blogs) may receive an input of eight public blog directories 
and two other sources obtained privately. An engine of the 
Source module (e.g., a programmed processor) then "crawls' 
the links or “blogroll' on each of these blogs (i.e., examines 
the blog for links to other blogs which may be subsequently 
examined) to identify a source set of blogs. Preprocessing 
may then be performed as in the illustrative process 300 of 
FIG. 3. It should be appreciated, however, that preprocessing 
may take any Suitable form comprising any suitable action or 
actions in implementations which do perform preprocessing, 
and that the steps outlined in this example of FIG. 3 may 
require Some modification for applications to Source data 
other than blogs or other textual sources. 

Process 300 begins in block 302 wherein, for practical 
reasons, the set of elements preferably is filtered in one or 
more ways. For example, in this example non-English lan 
guage blogs (or more generally, text in other languages not of 
interest) may be filtered out, as well as spam blogs or 
"splogs.” This can be done in any Suitable way, as the tech 
niques described herein are not limited to using any specific 
filtering techniques. As an example, consider a focus on blog 
posts about President George W. Bush that, in this example, 
are defined as those which use the terms “Bush”, “George 
W”, “Dubya', or “King George.” This filtering procedure 
may be repeated for 2008 presidential candidate Hillary Clin 
ton by applying a filter to keep blog posts which mention 
“Senator Clinton”, “Hillary”, “Hitlery”, and “Mrs. Clinton.” 
The same may be done for other presidential candidates or 
noteworthy figures to provide more source data, but, for sim 
plicity, results of this filtering are not included in this 
example. Applying these filters, from millions of posts down 
loaded on a daily basis, the source data for this example was 
narrowed to 4.303 blog posts about President Bush collected 
between Feb. 1 and Feb. 5, 2006, and 6,468 posts about 
Senator Clinton collected between Aug. 26 and Aug. 30. 
2006. It should be appreciated that the techniques described 
herein work without filtering (and even with foreign language 
blogs), but filters help focus the data set on particular ele 
ments of interest. 
The text within each element of the source data (i.e., the 

text of the blogs) may then be run through a second prepro 
cessing step in block 304 to improve ease of analysis. In this 
step, all the words may be converted to lower case (so that 
“These and “these are recognized as the same), and all 
punctuation marks may be removed. Another common type 
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of preprocessing that may be performed in this step is “stem 
ming.” which maps a word to its stem and reduces some of the 
language complexity by reducing the number of possible 
“words' to be summarized quantitatively. For example, stem 
ming processes may reduce “consist”, “consisted', 'consis 
tency”, “consistent”, “consistently”, “consisting, and “con 
sists', to their stem, which is “consist.” Stemming blogs does 
strip out information, in addition to reducing complexity, but 
the long experience in this literature is that the trade off seems 
well worth it. 

In a third preprocessing step, in block 306 the preprocessed 
text of each element may be summarized as a set of dichoto 
mous variables: one type for the presence or absence of each 
word (or “unigram'), a second type for the presence or 
absence of each word pair in a given sequence (or “bigram'), 
a third type for the presence or absence of each word tripletin 
sequence (or “trigram'), and so on to all “n-grams”. In some 
implementations of the techniques described herein, “words' 
may be defined as any set of continuous alphanumeric char 
acters bounded by spaces (after deleting punctuation and 
perhaps Stemming) and observed in at least one of the ele 
ments in the database; by this definition, words are therefore 
not limited to those that appear in common dictionaries. 
Using the presence or absence of an n-gram in an element, 
rather than a count of then-grams in the element, abstracts the 
data in a useful way in many applications (e.g., in many 
applications, but not necessarily all, the second time the word 
“awful” appears in a blog post does not add anywhere near as 
much information as the first). Of course, in Some applica 
tions of the techniques described herein, counts of the number 
of times an n-gram appears in an element may be informative 
and may be alternatively or additionally included. However, 
even with this abstraction, in the blog example the number of 
variables remaining is astounding—orders of magnitude 
larger than the number of blogs. For example, the sample of 
10,771 blog posts about President Bush and Senator Clinton 
included 201,676 unique unigrams, 2,392,027 unique big 
rams, and 5,761.979 unique trigrams. This merely confirms 
that bloggers will not run out of new ways of saying things 
any time Soon, but it also means some further simplification 
may be necessary. The usual choice is to consider only 
dichotomous stemmed unigram indicator variables (the pres 
ence or absence of each of a list of word stems), which has 
been found to be sufficient for many situations. In this 
example, the narrowed set includes only 164.292 unique pos 
sibilities. More emphasis may also be put on variables that are 
not too rare or prevalent across elements (so that these vari 
ables do vary). Such as deleting stemmed unigrams appearing 
in fewer than 1 percent or greater than 99 percent of all 
elements, which results (in this example) in only 3,672 vari 
ables. These procedures effectively group the infinite range of 
possible blog posts to “only' 27 distinct types. This makes 
the problem feasible but still represents a huge number (larger 
than the number of elementary particles in the universe). 
Procedures like these are common in the information extrac 
tion literature. 

In many applications, elements may also come with meta 
data, or information about the element that is not strictly part 
of the data of the element. Accordingly, in block 308, this 
metadata (if available) is (or at least optionally may be) ana 
lyzed. For the exemplary implementation using blogs as the 
source data, the URL of the blog, the title, or the blogroll, for 
example, may convey Some additional information. For 
example, one could code blogrolls by whether they cite the 
top 100 liberal or top 100 conservative blogs as an indication 
of the partisan identification of the blogger. Other possibili 
ties include an indicator for whether a word appears near the 
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start or end of the text, or a procedure to tag each word with a 
part of speech to attempt to include bigrams when unigrams 
will lose meaning in ways relevant to the categorization 
scheme (e.g., by replacing the two unigrams “not very with 
“not very’) or to include information from the linkage struc 
ture among the set of blogs. These additions and others pro 
vide important advantages in Some applications. Overall, the 
conclusion of the literature is that a brute force unigram 
based method, with rigorous empirical validation, will typi 
cally account for the majority of the available explanatory 
power. 
Techniques for Analysis of Data Employed by Some Embodi 
ments of the Invention 

In some embodiments of the methods taught herein, Source 
data may be divided into two sets of elements. 
The first is a small set called the “labeled set, for which 

each element i (i-1,..., n) is individually classified into, or 
Somehow otherwise labeled with, a category from a catego 
rization scheme (examples of n categories are discussed 
below) established prior to the classification effort. This may 
be done in any suitable manner, such as by hand coding or 
through application of any Suitable individual classification 
techniques. The element category variable is denoted as D. 
which in general takes on the value D, J, for possible catego 
ries j-1, . . . . J. In the running example, D, takes on the 
potential values {-2, -1, 1, 0, 1, 2, NA, NB}. 

The second, larger set of elements is described herein as the 
“target population in which each element 1 (for 1=1,..., L) 
has an unobserved classification D. Sometimes the labeled 
set will be a sample from (i.e., Subset of) the population and so 
the two overlap; more often it will be a nonrandom (or it could 
be a random or a pseudo-random) sample from a different 
Source than the population, such as from earlier in time, 
though still the same kind of data. 

The user need not provide any other variables, as every 
thing else is computed directly from the elements by an esti 
mation module that operates as below described. To define 
these variables for the labeled set, denote S, as equal to 1 if 
word stem k(k=1,..., K) is used at least once in elementi (for 
i=1,..., n) and 0 otherwise (and similarly for the population 
set substituting index i with index 1). This makes the abstract 
summary of the text of element i the set of these variables, 
{S,i ..., Sk}, which may be summarized as the Kx 1 vector 
of word stem variables S.S, may be considered to be a word 
stem profile because it provides a summary of all the word 
stems under consideration used in an element, as considered 
to be a content distribution for the labeled set as it provides a 
distribution of content (e.g., words) in the elements of the 
labeled set. This vector can also include other features of the 
text Such as based on any n-gram, or variables coded from the 
metadata. 
The quantity of interest in most of the conventional, Super 

vised learning literature is the set of individual classifications 
for all elements in the population: 

{D1,..., Dz}. (1) 

In contrast, the quantity of interest for most social Science 
scholarship, and the quantity of interest in many applications 
of the techniques disclosed herein, is the aggregate proportion 
of all (or a subset of all) these population elements that fall 
into each of the categories: 

where P(D) is a Jx1 vector, each element of which is a 
proportion computed by direct tabulation: 
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1 L. 

PD = j = X1(D) = i 
= 

(3) 

where 1(a)=1 ifa is true and 0 otherwise. 
Element category D, is one variable with many possible 

values, whereas word profile S, constitutes a set of dichoto 
mous variables. This means that P(D) is a multinomial distri 
bution with J possible values and P(S) is a multinomial dis 
tribution with 2' possible values, each of which is a possible 
word stem profile. 
The exemplary embodiments described herein can be 

implemented in any of numerous ways, including by com 
mercial entities taking any of numerous forms. For example, 
in the description provided above, the creation of a labeled set 
(e.g., by hand coding) and the estimating P(D) of the unla 
beled set of elements (i.e., the distribution of elements among 
the plurality of categories) is described as being related pro 
cesses. However, it should be appreciated that these processes 
can be performed by different entities (e.g., one that performs 
the estimation and another that performs the generation of the 
labeled set). Alternatively, a first entity seeking to estimate the 
distribution of elements in categories may create the labeled 
set itself, but then seek the services of a secondentity that may 
receive this labeled set and perform the estimating as 
described herein. Thus, the entity that performs the estima 
tion may receive the labeled set from any source (including 
creating the labeled set itself or receiving it from another 
entity). Accordingly, it should be appreciated that as used 
herein, the reference to receiving a labeled set or a categori 
zation of labeled elements does not imply that the labeled set 
was created by another entity, as the labeled set can be 
received not only from another entity but from the same entity 
(or even individual(s)) who created the labeled set. Neither 
does it assume the labeled set is produced “by hand” as the 
product of human judgment. It may be created manually by 
application of precise rules which do not allow for the exer 
cise of judgment or it may be created in an automated fashion 
by applying Such rules to input text, also. Any of these 
approaches will provide a usable labeled set. Thus, while the 
labeled set is needed, it may be taken as input to the estimation 
module performing the estimations on the unlabeled set; that 
is, as a "given when the estimation is performed. 
Contrasts with Conventional Techniques 

Advantages of the techniques described herein can be bet 
ter understood when contrasted with existing approaches. 
Thus, discussed below are the problems with two existing 
methods that can be used to estimate Social aggregates rather 
than individual classifications. Two such methods include 
“direct sampling and “the aggregation of individual element 
classifications' produced by conventional Supervised learn 
ing algorithms. Also shown below is how accurate estimation 
depends on the quantity of interest and related evaluative 
criterion, and how most of the literature and conventional 
approaches have goals that do not always coincide with those 
of most Social Scientists or other users of the techniques 
described herein. 

Perhaps the simplest method of estimating P(D) is to iden 
tify a well-defined population of interest, draw a random 
sample from the population, individually classify all the ele 
ments in the sample (e.g., by hand coding), and tabulate the 
individually-classified elements into each category. Drawing 
proper inferences with this method requires only basic Sam 
pling theory. It does not even require abstract numerical Sum 
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maries of the text of the elements such as word stem profiles 
or classifications of individual elements in the population set. 
The second approach to estimating P(D) is standard in the 

supervised learning literature. The idea is to first use the 
labeled sample to estimate a functional relationship between 
element category D and word features S. Typically, D serves 
as a multicategory dependent variable and is predicted with a 
set of explanatory variables {S,, . . . . S}, using some 
statistical (or machine learning, or rule-based) method. Then 
the coefficients of the model estimated, and the whole data 
generating process, are assumed the same in the labeled 
sample as in the population. The coefficients are then ported 
to the population and used with the features measured in the 
population, S. to predict the classification for each popula 
tion element D. Social Scientists who use these approaches 
follow the same steps and then aggregate the individual clas 
sifications via Equation 3 above to estimate their quantity of 
interest, P(D). Many models have been chosen to perform the 
basic classification task, including regression, discriminant 
analysis, radial basis functions, multinomial logit, CART, 
random forests, neural networks, Support vector machines, 
maximum entropy, and others. Much work goes into fitting 
and comparing the performance of these models in individual 
applications, but the conventional wisdom seems to be that 
the choice of the statistical method is less important than the 
information in the individually-classified data set and the 
features chosen. 

Unfortunately, in two circumstances, both of which appear 
common in practice, the standard Supervised learning 
approach will fail for estimating the quantity of interest in 
many applications of the techniques described herein. The 
first circumstance also invalidates the simple direct sampling 
estimator in most applications. 

First, when the labeled set is not a random sample from the 
population, both methods fail. Yet, as discussed above, “in 
many, perhaps most real classification problems the data 
points in the labeled design set are not, in fact, randomly 
drawn from the same distribution as the data points to which 
the classifier will be applied. . . . It goes without saying that 
statements about classifier accuracy based on a false assump 
tion about the identity of the labeled design set distribution 
and the distribution of future points may well be inaccurate' 
(Hand, David. 2006. “Classifier Technology and the Illusion 
of Progress. Statistical Science 21(1):1-14.) Deviations from 
randomness may occur due to what Hand calls "population 
drift, which occurs when the labeled set is collected at one 
point and meant to apply to a population collected over time 
(as in the blogs example), or for many other reasons. 
The lack of random sampling would seem to be an even 

more common characteristic of real Social Science applica 
tions, which have many aggregate quantities of interest, but a 
single individually-classified data set is typically insufficient 
to estimate all the quantities. That is, a study that asks only a 
single question is rare. Almost all analyses also study ques 
tions within subdivisions of their population of interest. The 
subdivisions may include time periods to help identify trends 
or, to seek out other patterns, they may include Subdivisions 
by policy areas, speakers, countries, income groups, partisan 
identification, or others. If a separate random sample could be 
drawn from each subdivision, each separate P(D) could be 
estimated by direct sampling, but the burdens of individual 
classification would quickly overwhelm any researcher's 
coding capacity. And even in the unlikely case where a ran 
dom sample could be collected for each, Scholars continually 
develop new questions, and thus new quantities of interest, 
quicker than any classification team could respond. 
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The second exemplary failure condition is more subtle but 

more insidious: The data generation process assumed by the 
standard Supervised learning approach predicts D with S. 
modeling P(DIS). However, this is not always the way the 
world works. To take the running example, bloggers do not 
start writing and only afterword figure out their affect toward 
the president: they start with a view, which is abstracted here 
as an element category, and then set it out in words. That is, 
the right data generation process is the inverse of what is 
being modeled, where S should be predicated with D, and 
inferring P(SID). The consequence of using P(DIS) instead is 
the requirement of two assumptions needed to generalize 
from the labeled sample to the population. The first assump 
tion is that S “spans the space of all predictors' of D (Hand, 
2006), which means that once you control for measured vari 
ables, there exist no other variable that could improve predic 
tive power at all. In problems involving human language, 
including the blog example, this assumption is virtually never 
met, since S is intentionally an abstraction of the content of 
the element and so by definition does not representall existing 
information. As such, S does not span the space of all predic 
tors. The other assumption is that the class of models chosen 
for P(DIS) includes the “true” model. This is a more familiar 
assumption to Social scientists, but it is of course no easier to 
meet. In this case, finding even the best model or a good 
model, much less the “true one.” would be extraordinarily 
difficult and time consuming given the huge number of poten 
tial explanatory variables coded from text in unigrams, big 
rams, etc. 

Embodiments of the processes and systems described 
herein avoid each of these impossible assumptions even with 
out a labeled set that is a random sample from the population. 
The criteria for Success in the Supervised learning literature 

is the percentage correctly classified in an (out of sample) test 
set. This is one reasonable criterion when the focus is on 
individual-level classification, but it is sometimes insufficient 
even if the goal is individual classification and can be seri 
ously misleading for the general purpose of estimating aggre 
gate classification frequencies. For example, in some conven 
tional methods, the percent correctly predicted ranged from 
77 percent to 83 percent. This is an excellent classification 
performance for the difficult problem of sentiment analysis 
these methods analyzed, but Suppose that all the misclassifi 
cations were in a particular direction for one or more catego 
ries. In that situation, the statistical bias (the average differ 
ence between the true and estimated proportion of elements in 
a category) in using this method to estimate the aggregate 
quantities of interest could be enormous, ranging as high as 
17 to 23 percentage points. 

In fact, except at the extremes, there exists no necessary 
connection between low misclassification rates and low bias: 
It is easy to construct examples of learning methods that 
achieve a high percent of individual elements correctly pre 
dicted and large biases for estimating the aggregate element 
proportions, as well as other methods that have a low percent 
correctly predicted but nevertheless produce relatively unbi 
ased estimates of the aggregate quantities. For example, flip 
ping a coin is not a good predictor of which party will win a 
presidential election, but it does happen to provide an unbi 
ased estimate of the percentage of Democratic victories since 
the first World War. Evidence on bias would be useful for 
individual classification but is essential for estimating Social 
Science aggregate quantities of interest. Yet, since authors in 
this literature are interested primarily in individual classifi 
cation, they do not usually report the different types of mis 
classification errors their methods produce or bias in estimat 
ing the aggregates. As such, the bulk of the Supervised 
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learning literature offer no indication of whether the methods 
proposed would work well for Some applications in which an 
estimation of aggregate proportions is desired. This problem 
may be overcome by the techniques described herein. 
Techniques for Statistically Consistent Estimates of Element 
Distribution 

Having a different quantity of interest than the supervised 
learning literature is not merely a different focus; it also poses 
an opportunity to Substantially improve the quality of esti 
mates of aggregate quantities of interest and with far less 
onerous assumptions. 

Described below are principles which may be used for two 
techniques for optimized estimation of element category pro 
portions having more accuracy and using fewer assumptions 
than the conventional techniques described above. The first 
technique may be useful for correcting estimations using 
conventional classification methods; the second technique 
may be used as a stand-alone procedure for estimating a 
distribution of elements of source data in categories without 
performing individual classification of all elements or relying 
on random-sampling assumptions. 
First Technique for Corrected Aggregations of Individual 
Classification 

FIG. 4 shows a flowchart of an exemplary process 400 for 
performing correction on aggregations of individual classifi 
cations performed by conventional methods. It should be 
appreciated that the process shown in FIG. 4 is merely illus 
trative of techniques which may implement some of the prin 
ciples disclosed herein, and that other techniques are pos 
sible. 
The process 400 begins in block 402, in which any suitable 

method or method(s) for making individual-level classifica 
tion decisions are applied to a set of elements in source data. 
The method used in block 402 may be any suitable technique 
for individual classification, including any of those offered in 
the Supervised learning literature (e.g., multinomial logit or 
other Suitable technique). In many implementations, the 
actions of block 402 may comprise applying an individual 
classification model to a labeled set, using that model to 
classify each of the unlabeled elements in the population of 
interest, and the classifications aggregated to obtain a raw, 
uncorrected estimate of the proportion of elements in each 
category. This approach is commonly used by those who use 
classification techniques to study category proportions, but it 
should be appreciated that other techniques may be used for 
performing individual-level classification. 

In block 404, an estimation module implemented in accor 
dance with the principles described herein estimates misclas 
sification probabilities. This may be done in any suitable 
manner, including by dividing the labeled set of elements into 
a training set and a test set. A classification method (such as 
the same classification method applied in block 402) is then 
applied to the training set alone and predictions are made for 
the test set, D, (ignoring the test sets labels). Then the test 
set's labels from block 402 are used to calculate the specific 
misclassification probabilities between each pair of actual 
classifications given each true value, P(D, D, j). These 
misclassification probabilities do not indicate which specific 
elements are misclassified, but they can be used to correct the 
raw estimate of the element category proportions. 

For example, Suppose it is determined, in predicting the test 
set proportions from the training set in block 404, that 17 
percent of the elements classified in block 402 as D=1 really 
should have been classified as D-3. For any one individual 
classification in the population, this fact is of no help. But for 
element category proportions, it may be easy to use. In block 
406, using the determinations of block 404, 17 percent is 
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subtracted from the raw estimate of the category 1 proportion 
in the population, P(D=1), and added to category 3, P(D–3). 
Even if the raw estimate was badly biased, which can occur 
even with optimal individual element classification, the 
resulting corrected estimate would be unbiased and statisti 
cally consistent so long as the population misclassification 
errors were estimated well enough from the labeled set (a 
condition discussed below). Even if the percent corrected 
predicted is low, this corrected method can give unbiased 
estimates of the category frequencies. 

This technique may be implemented in any suitable man 
ner using any suitable calculations, an example of which is 
discussed below. Consider first a dichotomous D with values 
1 or 2, a raw estimate of the proportion of elements in cat 
egory 1 from some method of classification, P(D-1), and the 
true proportion (corrected for misclassification), P(D=1). The 
raw estimate P(D=1) can be based on the proportion of indi 
vidual elements classified into category 1. However, a better 
estimate for classifiers that give probabilistic classifications is 
to sum the estimated probability that each element is in the 
category for all elements. For example, if 100 elements each 
have a 0.52 probability of being in category 1, then all indi 
vidual classifications are into this category. However, since it 
is only expected that 52 percent of elements to actually be in 
category 1, a betterestimate is P(D=1 )=52.0. Then two forms 
of correct classification may be defined as “sensitivity.” 
sens=P(D=1|D=1) (sometimes known as "recall”), and 
“specificity,” or spec=P(D–2|D-2). For example, sensitivity 
is the proportion of elements that were predicted to be in 
category 1 among those actually in category 1. 
The proportion of elements estimated to be in category 1 

come from only one of two sources: elements actually in 
category 1 that were correctly classified and elements actu 
ally in category 2 but misclassified into category 1. This 
accounting identity, known as the Law of Total Probability, 
may be represented as 

Since Equation 4 is one equation with only one unknown 
since P(D=1)=1-P(D-2), it is easy to solve. As first showed, 
the solution is 

PD 1) - (1 - Spec) (5) 
P(D = 1) = Sens - (1 - Spec) 

This expression can be used in practice by estimating sen 
sitivity and specificity in the first stage analysis (separating 
the labeled set into training and test sets as discussed above or 
more formally by cross-validation), and using the entire 
labeled set to predict the (unlabeled) population set to give 
P(D=1). Plugging in these values in the right side of Equation 
5 gives a corrected, and statistically consistent, estimate of the 
true proportion of elements in category 1. 

King and Lu (2007) show how to generalize Equation 4 to 
include any number of categories in “Verbal Autopsy Meth 
ods with Multiple Causes of Death. September, 2007, avail 
able at http://gking.harvard.edu/. This paper is hereby incor 
porated by reference in its entirety and a portion of the paper 
is reproduced below. King and Lu (2007) accomplish this by 
Substituting for 1, and Summing overall categories instead of 
just 2: 
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Given P(D) and the misclassification probabilities, 
P(D-j|Dj') which generalize sensitivity and specificity to 
multiple categories, this expression represents a set of Jequa 
tions (i.e., defined for j=1,..., J) that can be solved for the J 
elements in P(D). This is aided by the fact that the equations 
include only J-1 unknowns since elements of P(D) must sum 
to 1. 
As discussed above, a conventional method meeting all the 

assumptions required for optimal classification performance 
can still give biased estimates of the element category pro 
portions. Offered here are techniques for determining statis 
tically consistent estimates of element category proportions 
that operate without having to improve conventional indi 
vidual classification accuracy and with no assumptions 
beyond those already made by the individual element classi 
fier. In particular, classifiers require that the labeled set be a 
random sample from the population. Techniques operating 
according to these principles only require a special case of the 
random selection assumption: that the misclassification prob 
abilities (sensitivity and specificity with 2 categories or 
P(D-j|Dj') for alljandi'in Equation 6) estimated with data 
from the labeled set also hold in the unlabeled population set. 
This assumption may be wrong, but if it is, then the assump 
tions necessary for the original classifier to work are also 
Wrong and Will not necessarily even give accurate individual 
classifications. This approach will also work with a biased 
classifier. 

Second Technique for Determining Proportions without 
Determining Individual Classification 
The second technique discussed herein for determining 

category proportions requires no parametric statistical mod 
eling, individual element classification, or random sampling 
from the target population. This technique also properly treats 
S as a consequence, rather than a cause of D. 

FIG. 5 shows a flowchart of an exemplary process 500 for 
performing a statistically consistent and approximately unbi 
ased estimation of a distribution of elements of source data 
into a set of element categories without needing to individu 
ally classify all elements or rely on any assumptions that a 
classified set is a statistically random sample. It should be 
appreciated that the process shown in FIG. 5 is merely illus 
trative of techniques which may implement some of the prin 
ciples disclosed herein, and that other techniques are pos 
sible. 
The process 500 begins in block 502, in which any suitable 

method or method(s) for making individual-level classifica 
tion decisions are applied to a set of elements in source data. 
The method used in block 502 may be any suitable technique 
for individual classification, including any of those offered in 
the Supervised learning literature (e.g., multinomial logit or 
other Suitable technique). In many implementations, the 
actions of block 502 may comprise applying an individual 
classification model to a labeled set, using that model to 
classify each of the unlabeled elements in the population of 
interest, and the classifications aggregated to obtain a raw, 
uncorrected estimate of the proportion of elements in each 
category. This approach is commonly used by those who use 
classification techniques to study category proportions, but it 
should be appreciated that other techniques may be used for 
performing individual-level classification. 
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In block 504, an estimation module implemented in accor 

dance with the principles described herein estimates misclas 
sification probabilities. This may be done in any suitable 
manner, including by dividing the labeled set of elements into 
a training set and a test set. A classification method (Such as 
the same classification method applied in block 502) is then 
applied to the training set alone and predictions are made for 
the test set, D, (ignoring the test sets labels). Then the test 
set's labels from block 502 are used to calculate the specific 
misclassification probabilities between each pair of actual 
classifications given each true value, P(Di |Dj"). These 
misclassification probabilities do not indicate which specific 
elements are misclassified, but they can be used to correct the 
raw estimate of the element category proportions. 

In block 506, the same procedure is followed and the entire 
labeled set is used to predict the distribution in the population, 
P(D). A method that will do better than whichever supervised 
learning method chosen originally is to use that method and 
correct it for these misclassification probabilities. For 
example, Suppose it is determined in block 504, in predicting 
the test set P(D) from the training set, that 23 percent of the 
elements embodiments of the invention classified as D=1 
really should have been classified as D-3. For any one indi 
vidual classification in the population, this fact is of no help, 
since it is not known whether any particular element was 
misclassified or not. But for aggregate element classification 
frequencies, it may be easy to use. In block 506, 23 percent is 
Subtracted from the raw estimate of the category 1 proportion, 
P(D=1) and added to category 3, P(D=3). Even if the raw 
estimate was badly biased, the resulting corrected estimate 
would be unbiased and statistically consistent (so long as the 
population misclassification errors were estimated well 
enough from the labeled set). Even if the percent correctly 
predicted is low, this corrected method can give unbiased 
estimates of the aggregate element category frequencies. 

This technique may be implemented in any suitable man 
ner using any suitable calculations, an example of which is 
discussed below. Consider first a dichotomous D with values 
1 or 2, a raw estimate of the proportion of elements in cat 
egory 1 from Some method of classification, P(D=1), and the 
true proportion (corrected for misclassification), P(D=1). 
Then define the two forms of misclassification as “sensitiv 
ity.” sens=P(D-1 ID=1) (sometimes known as “recall), and 
“specificity,” or spec=P(D=2|D-2). For example, sensitivity 
is the proportion of elements that were predicted to be in 
category 1 among those actually in category 1. 
The proportion of elements estimated to be in category 1 as 

the actual proportion of category 1 elements correctly classi 
fied times the proportion actually in category 1, plus the 
proportion of category 2 elements misclassified (into cat 
egory 1) times the true proportion in category 2 is: 

Then, Equation 7 can be solved for the true P(D=1) (since 
P(D=1)=1-P(D-2)) as 

PD 1) - (1 - Spec) (8) 
P(D = 1) = Sens - (1 - Spec) 

This expression can be used in practice by estimating sen 
sitivity and specificity from the first stage analysis, separating 
the labeled set into training and test sets, and using the entire 
labeled set to predict the (unlabeled) population set to give 
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P(D=1). Plugging in these values on the right side of Equation 
8 gives a corrected estimate of the true proportion of elements 
in category 1. 

Equation 7 may be generalized to include any number of 
categories for applications beyond those have a dichotomous 
D. King and Lu (2007) (referenced above) show how to 
accomplish this by Substituting for 1, and Summing overall 
categories instead of just 2: 

r (9) 

PD = i)= X PD = i | D = p)PD = p) 

Given P(D) and the misclassification probabilities, 
P(D-ID j') which generalize sensitivity and specificity to 
multiple categories, this expression represents a set of Jequa 
tions (i.e., defined for j=1,..., J) that can be solved for the J 
elements in P(D). This is aided by the fact that the equations 
include only J-1 unknowns since elements of P(D) must sum 
to 1. Although Equations 8 and 9 require some parametric 
method for estimating the aggregate proportions, P(D-j), 
individual classifications D, (for all i) are not necessarily 
needed. 

Finally, in block 508, drop parametric statistical modeling 
altogether, as shown in King and Lu (2007). Instead of using 
a statistical or machine learning method that uses S and D to 
estimate P(D-j) and then correcting via Equation 9, as was 
shown in the first technique described above, King and Lu 
(2007) replace D in Equation 9 with S, and write: 

In fact, any observable implication of the true D can be 
used in place of D, and since D is a function of S because the 
words chosen are by definition a function of the element 
category—it certainly can be used. To simplify, Equation 10 
is rewritten as an equivalent matrix expression: 

(11) 

where, as indicated, P(S) is the probability of each of the 2' 
possible word stem profiles occurring, P(SID) is the probabil 
ity of each of the 2' possible word stem profiles occurring 
within the elements in category D (columns of P(SID) corre 
sponding to values of D), and P(D) is the J-vector quantity of 
interest. 

Elements of P(S) can be estimated by direct tabulation 
from the target population, without parametric assumptions; 
instead, the proportion of elements observed with each pat 
tern of word profiles is computed. Because D is not observed 
in the population, P(SID) cannot be estimated directly. 
Rather, the assumption is made that its value in the labeled, 
hand-coded (or otherwise individually classified) sample, P. 
(SID), is the same as that in the population, 

P'(SID)=P(SID), (12) 

and the labeled sample is used to estimate this matrix. Para 
metric assumptions are avoided here too, by using direct 
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24 
tabulation to compute the proportion of elements observed to 
have each specific word profile among those in each element 
category. 

In principle, P(D) could be estimated in Equation 8 assum 
ing only the Veracity of Equation 12 and the accuracy of 
estimates of P(S) and P(SID), by solving Equation 11 via 
standard regression algebra. That is, if P(D) is thought of as 
the unknown “regression coefficients’ B, P(SID) as the 
“explanatory variables' matrix X, and P(S) as the “dependent 
variable'Y, then Equation 11 becomes Y=XB (with no error 
term). This happens to be a linear expression but not because 
of any assumption imposed on the problem that could be 
wrong. The result is that P(D) can be determined via the usual 
regression calculation: B-(XX)'X'y (with proper con 
straints, as discussed above). This calculation does not 
require classifying individual elements into categories and 
then aggregating; it estimates the aggregate proportion 
directly. 

This simple approach presents two challenges in the exem 
plary implementation using blogs, and accordingly may be 
found in Some other applications of the principles described 
herein. First, K is typically very large and so 2 is far larger 
than any current computer could handle. Second is a sparse 
ness problem since the number of observations available to 
tabulate for estimating P(S) and P(SID) is much smaller than 
the number of potential word profiles (n3). To avoid both 
of these issues, in Some implements, sets of between approxi 
mately 10 and 200 words may be randomly chosen (the num 
ber being chosen by cross-validation within the labeled set, 
once for each data set type). In each set, P(D) may be calcu 
lated, the results averaged. Because S is treated as a conse 
quence of D, using sets of S introduces no new assumptions. 
This procedure turns out to be equivalent to a version of the 
standard approach of Smoothing sparse matrices via kernel 
densities. Standard errors and confidence intervals may be 
computed via bootstrapping. 
A key advantage of estimating P(D) directly without the 

intermediate step of computing the individual classifications 
is that the assumptions required to make it work are remark 
ably less restrictive. The necessary assumptions can still be 
wrong, and as a result estimates may be biased, but the dra 
matic reduction in their restrictiveness means that under the 
new approach it is more likely that something close to the 
right answer will be calculated in many applications where 
valid inferences were not previously likely. 
As described above, to apply conventional direct sampling 

or standard Supervised learning approaches, three conditions 
must be true or assumed: the labeled element set must be a 
statistically random sample from the target population; the set 
of word stem profiles must span all the predictive information 
in the elements; and the class of parametric models chosen 
must include Something close to the “true data generation 
process. Primarily, because the data generation process fol 
lowed by many sources of data is P(SID) (as discussed above 
in connection with blogs), but these models are based on 
P(DIS), satisfying these assumptions in real data would be 
unlikely and a justification of them would, in many applica 
tions, be forced at best. 

In contrast, some embodiments of the new approaches 
described herein allow the distribution of elements across 
word stem profiles, P(S), and the distribution of elements 
across the categories, P(D), to each be completely different in 
the labeled set and population set of elements. For example, if 
a word or pattern of words becomes more popular between 
the time the labeled set was individually classified and the 
population elements were collected—or new terms or expres 
sions appear in the Source data—no biases would emerge. 
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Similarly, if elements in certain categories became more 
prevalent in the population than in the labeled set, no biases 
would be created. In the running blog example, no bias would 
be induced if the labeled set includes a majority of conserva 
tive Republicans who defend everything President Bush does 
and the target population has a Super-majority liberal Demo 
crats who want nothing more than to end the Bush presidency. 
This cannot hold in conventional approaches, as changes in 
either P(D) or P(S) between the labeled and population sets 
would be sufficient to doom any of the conventional classifi 
cation-based approaches. In contrast, so long as words and 
expressions retain a particular meaning or usage (e.g., as long 
as "idiot' remains an insult), techniques operating according 
the principles described herein can make appropriate use of 
that information, even if the word or expression becomes less 
common (a change in P(S)) or if there are fewer people who 
deserve it (a change in P(D)). 
A theoretical assumption of some techniques described 

herein is Equation 12 that the language used to describe a 
particular elements category is generally the same in both 
samples. To be more specific, among all elements in a given 
category, the prevalence of particular word profiles in the 
labeled set should be the same as in the population set. To use 
the blogging example, the language bloggers use to describe 
an “extremely negative' view of Hillary Clinton in the labeled 
set must at least be a subset of the way she is described in the 
target population. They do not need to literally write the same 
blog posts, but rather need to use similar word profiles so that 
P'(SID=-2)=P(SID=-2). The number of examples of each 
category need not be the same either in the two element sets. 
And as discussed above, the proportion of examples of each 
element category and of each word profile can differ between 
the two element sets (i.e., the labeled set and the unlabeled 
set). 

Applying the methodologies described above has the 
advantage not only of requiring fewer and less restrictive 
assumptions but also of being considerably easier to use in 
practice. Applying the conventional Supervised learning 
approach is difficult, even if one is optimistic about meeting 
its assumptions. Choosing the “true' model is nearly impos 
sible, while merely finding a “good' specification with thou 
sands of explanatory variables to choose from can be extraor 
dinarily time consuming. One needs to fit numerous statistical 
models, consider many specifications within each model 
type, run cross-validation tests, and check various fit statis 
tics. Social Scientists have a lot of experience with specifica 
tion searches, but all the explanatory variables mean that even 
one run would take considerable time and many runs would 
need to be conducted. 
The problem is further complicated by the fact that social 

Scientists are accustomed to choosing their statistical speci 
fications in large part on the basis of prior theoretical expec 
tations and results from past research, whereas the over 
whelming experience in the information extraction literature 
is that radically empirical approaches work best. For 
example, one might attempt to implement techniques to care 
fully choose words or phrases to characterize particular ele 
ment categories (e.g., “awful”, “irresponsible.” “impeach 
etc., to describe negative views about President Bush), and, 
indeed, this approach will often work to Some degree. Yet, a 
raw empirical search for the best specification, ignoring these 
theoretically chosen words, will typically turn up predictive 
patterns that would not have been thought of ex ante, Such 
that, overall, this empirical, even “atheoretical specification 
search approach, usually works better. Indeed, methods based 
on highly detailed parsing of the grammar and sentence struc 
ture in each element can also work, but the strong impression 
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from the literature is that the extensive, tedious work that goes 
into adapting these approaches for each application are more 
productively put into collecting more individually classified 
examples and then using an automatic specification search 
routine. 
Techniques for Performing Individual Classification 

Embodiments of the invention are also directed toward 
techniques for performing individual classification of ele 
ments of source data. It should be appreciated that these 
techniques are merely exemplary of those that may be 
employed for performing individual classification of ele 
ments, and that embodiments of the invention which imple 
ment some or all of the principles described herein are not 
limited to performing individual classification using these 
techniques or any other particular technique. 
As above, because these techniques have broad implica 

tions for the general problem of individual classification in a 
variety of applications, the discussion is generalized here in 
terms of elements with the notations S referring to what is 
called in the classifier literature features or covariates and D 
denoting category labels. 
As discussed above and as taught by Hand (2006), many 

classical Supervised classification techniques rely on the 
assumption that the data in the design set are randomly drawn 
from the same distribution as the points to be classified in the 
future. In other words, conventional individual classifiers 
make the assumption that the joint distribution of the data is 
the same in the unlabeled (community) set as in the labeled 
(hospital) set P(S, D)=P(S, D). This assumption is a highly 
restrictive and often unrealistic condition. If P(DIS) fits 
exceptionally well (i.e., with near 100 percent sensitivity and 
specificity), then this common joint distribution assumption 
is not necessary, but classifiers rarely fit that well. 

In many applications of classifying techniques (e.g., the 
blog example above), assuming common joint distributions 
or nearly perfect predictors is almost always wrong. Hand 
(2006) gives many reasons why these assumptions are wrong 
as well in many other types of classification problems. Addi 
tionally, because P(S) and P(S) are directly estimable from 
the unlabeled and labeled sets respectively, these features of 
the joint distribution can be directly compared and this one 
aspect of the common joint distribution assumption can be 
tested directly. Of course, the fact that this assumption can be 
tested also implies that this aspect of the common joint dis 
tribution assumption need not be made in the first place. In 
particular, as shown above, it is unnecessary to assume that 
P(S)=P(S) or P(D)=P(D) when trying to estimate the aggre 
gate proportions. These assumptions are also unnecessary in 
individual classifications. 

Thus, instead of assuming a common joint distribution 
between the labeled and unlabeled sets, a considerably less 
restrictive assumption may be made that only the conditional 
distributions are the same: P(SID)=P(SID). (As above, the 
needed joint distribution in the unlabeled set is determined by 
multiplying this conditional distribution estimated from the 
labeled set by the marginal distribution P(S) estimated 
directly from the unlabeled set.) Thus, to generalize the 
results to apply to individual classification, which requires an 
estimate of P(DSS), Bayes theorem may be used: 

13 
P(DS = S) = (13) 

FIG. 6 shows an exemplary process 600 for using Equation 
13, though it should be appreciated that process 600 is merely 
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exemplary of techniques which may be implemented accord 
ing to these principles. Process 600 begins in block 602, in 
which elements of source data are individually classified in 
any suitable manner, such as through a conventional auto 
mated process for individual classification, throughhand cod 
ing, or through any other process. In block 604, an estimation 
module uses Equation 13 and information determined in 
block 602 to perform estimations of classification on indi 
vidual elements in the unlabeled population. Block 604 may 
be performed in any suitable manner. Such as by using 
P(SSID) from the labeled set, the estimated value of 
P(D) from, for example, any of the procedures described 
above or any other technique, and the P(S,S) directly esti 
mated nonparametrically from the unlabeled set in the man 
ner set forth below. 
As with the techniques described above, subsets of S and 

average different estimates of P(DIS, s.) may be used, 
although this time the averaging is via committee methods 
since each subset implies a different model (with the result 
constrained so that the individual classifications aggregate to 
the P(D) estimate). Each of these lower dimensional subsets 
(labeled “sub”) also imply easier-to-satisfy assumptions than 
the full conditional relationship, P(SID)=P(SID). 

The power of these results can be illustrated with a simple 
simulation. For simplicity, assume that features are indepen 
dent conditional on the category labels in the labeled set, 
P"(S-s|D)=II. “P(S. sID), which is empirically reason 
able except for heterogeneous residual categories. In the 
example, the data is then simulated, with 5 element catego 
ries, 20 word stem profiles (features), and 3000 elements in 
the labeled and unlabeled sets. The data is generated so as to 
have very different marginal distributions for P(S) and P(D). 
FIG. 7 gives these marginal distributions, plotting the unla 
beled set values horizontally and labeled set vertically; note 
that few points are near the 45 degree line. These data are 
generated to violate the common joint distribution assump 
tions of all existing standard classifiers, but still meet the less 
restrictive conditional distribution assumption. 

For comparison, a standard Support vector machine classi 
fier is then run on the simulated data (Such as one disclosed by 
Chang and Lin (2001) or any other suitable classifier), which 
classifies only 40.5 percent of the observations correctly. In 
contrast, the simple nonparametric alternative operating 
according to the principles disclosed herein classifies 59.8 
percent of the same observations correctly. One advantage of 
the method described herein comes from the adjustment of 
the marginals to fit P(D) in the “unlabeled" set. This can be 
seen by viewing the aggregate results, which appear in FIG. 8 
with the truth plotted horizontally and estimates vertically. 
Note that the estimates (plotted with black disks) are much 
closer to the 45 degree line for every true value than the SVM 
estimates (plotted with open circles). 

This section illustrates only the general implications of one 
exemplary strategy for individual classification. It should be 
straightforward to extend these results to provide a simple but 
powerful correction to any existing classifier, as well a more 
complete nonparametric classifier, and Such variations are 
intended to be a part of this disclosure. 
Results of Application of Exemplary Techniques 

Having described exemplary methods for estimating the 
distribution of elements in categories, it may be shown how 
embodiments of the invention work in practice. A simple 
simulated example is shown first, followed by several real 
examples from different fields, which are then followed with 
an empirical examination of selecting varying numbers of 
elements to be individually classified to determine the labeled 
Set. 
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Simulations with Blog Data 
In this example, a simulated data set of 5 words is chosen 

having 2–32 possible word profiles. To generate a realistic 
labeled data set, P(D) is set to be the empirical distribution 
tabulated from the individually classified blogs. Then the 
population element category frequencies, P(D), are set to very 
different values. It is assumed that the same distribution of 
language used for each category is approximately the same in 
the two sets, so that Equation 9 holds. A value Disthen drawn 
from P(D), the simulation modeled according to P'(SID), 
and the simulated matrix S drawn from this density. This is 
repeated 1,000 times to produce the labeled data set, and 
analogously for the population. 
FIG.9 summarizes the sharp differences between the indi 

vidually classified and population distributions in these data. 
The left graph plots P'(D) horizontally by P(D) vertically, 
where the seven circles represent the category proportions. If 
the proportions were equal, they would all fall on the 45° line. 
If one used the labeled, individually classified sample in this 
case via direct sampling to estimate the element category 
frequencies in the population, the result would not even be 
positively correlated with the truth. 
The differences between the two distributions of word 

frequency profiles appear in the right graph (where for clarity 
the axes, but not labels, are on the log scale). Each circle in 
this graph represents the proportion of elements with a spe 
cific word profile. Again, if the two distributions were the 
same, all the circles would appear on the diagonal line, but 
again many of the circles fall far from this line, indicating the 
large differences between the two samples. 

Despite the considerable differences between the labeled 
data set and the population, and the fact that even much 
Smaller differences would bias standard approaches, embodi 
ments of the invention still produce accurate estimates. FIG. 
10 presents illustrative results. The actual P(D) is on the 
horizontal axis and the estimated version is on the vertical 
axis, with each of the seven circles representing one of the 
element frequency categories. Estimates that are accurate fall 
on the 45° line. In fact, the points are all huddled close to this 
equality line, with even the maximum distance from the line 
for any point being quite Small. 

Simulations. Using Other Data 
Three direct out-of-sample tests of embodiments of the 

invention in different types of data are described below. The 
first starts with 4.303 blog posts which mention George W. 
Bush. These posts include 201,676 unique words and 3,165 
unique word stems among those appearing in more than 1 
percent and fewer than 99 percent of the posts. The data set is 
randomly divided in half between the labeled set and unla 
beled set, and half (or 713) of the posts coded -2 or NBamong 
those in the unlabeled set are then randomly deleted. An 
unlabeled set therefore intentionally selects on (what would 
be considered, in standard Supervised learning approaches) 
the dependent variable. This adjustment would create selec 
tion bias in the standard approach but, as shown herein, leaves 
inferences from the techniques described herein approxi 
mately unbiased. The results from the nonparametric estima 
tor of some embodiments of the invention appear in FIG. 11. 
This graph plots one circle for each of the seven categories, 
with 95 percent confidence intervals appearing as a vertical 
line through it. Clearly, most of the points are quite close to 
the 45 degree line, indicating approximately unbiased esti 
mates, and all are within the 95 percent confidence intervals. 
A second example is from a standard corpus of movie 

review ratings commonly used in the computer Science litera 
ture to evaluate Supervised learning methods. The categori 
Zation is one, two, three, or four stars indicating the quality of 
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the movie. The results using the nonparametric estimator part this is because there is little more error to eliminate as, in 
appear in the left graph in FIG. 12, and are again quite accu- this example, the technique then has an average RMSE of 
rate. Deviations from the 45° line are due to slight violations only about 1.5 percentage points. 
of the assumption in Equation 9, perhaps due to category drift. The conclusion here is that individually classifying more 
The final example is from the Carnegie Mellon University 5 than about 500 elements to estimate a specific quantity of 

Text Learning Group on university web sites, another stan- interest is probably not necessary, unless one is interested in 
dard computer Science corpus used to test Supervised learning 
methods. This project classified University webpages in 1997 
as belonging in one of seven non-ordered categories (student, 
faculty, staff, department, course, project, or other). In this 10 
example, all 8.275 webpages are used as the training set and 
a deliberately-skewed sample of 930 as the test set. The 
results appear on the right graph in FIG. 12. Again, a non 
parametric method gives estimates that are all clustered near 
the 45° line and within the 95 percent confidence intervals, 15 
indicating highly accurate estimates. 

Exemplary Techniques for Selecting a Number of Ele 
ments in the Labeled Set 
Any remaining bias in the exemplary estimator is primarily 

a function of the assumption in Equation 9. In contrast, effi- 20 
ciency, as well as confidence intervals and standard errors, are 
primarily a function of how many elements are individually 
classified. But how many is enough? Individual classification 
may be expensive and time consuming and so it is desirable to 
limit its use as much as possible, Subject to acceptable uncer- 25 
tainty intervals. 

To study this question, bias is set aside by randomly sam 
pling the labeled set directly from the population. For both an 
estimator in accordance with one exemplary technique dis 
closed herein (on the left) and the conventional direct sam- 30 
pling estimator (on the right), FIG. 13 plots the bias vertically 
by the number of individually-classified elements in the 
labeled test set horizontally. Zero bias is indicated by a hori 
Zontal line. 

In these data, a direct sampling approach is clearly optimal, 35 
and the right graph shows the absence of bias no matter how 
many elements are in the labeled set. The estimator operating 
according to the principles disclosed herein, in the left graph, 
is also approximately unbiased for the entire range of corpus 
sizes. That is, even for as few as 100 individually classified 40 
elements, both estimators are unbiased, and even the largest 
deviations of bias from Zero is never much more than a single 
percentage point. The difference is that the dispersion around 
Zero bias is slightly higher for the estimator than the error in 
direct sampling. 45 

This pattern is easier to see in FIG. 14 where the root mean 
square error (RMSE) averaged across the categories is plotted 
vertically by the number of individually-classified elements 
horizontally for one embodiment of the invention (straight 
line) and the direct sampling estimator (dashed line). RMSE 50 
is lower for the direct estimator, of course, since this sample 

much more narrow confidence intervals than is common or in 
specific categories that happen to be rare. For some applica 
tions, as few as 100 elements may even be sufficient. 
Techniques for Compensating for Unreliability in Classifica 
tion 

Developing categories, training coders or automated clas 
Sifying techniques, and conducting individual classification 
of large scale sets is often a very difficult task. Although 
scholars no longer concede that “the procedures and the cat 
egories used in content analysis cannot be standardized.” 
(Waples, D., Berelson, B., and Bradshaw, F. R. 1940. “What 
Reading Does to People: A Summary of Evidence on the 
Social Effects of Reading and a Statement of Problems for 
Research.” The University of Chicago Press) the difficulty of 
the task is widely recognized. Inter-coder reliability (i.e., the 
rate at which two processes or two coders will agree on an 
individual classification) is measured in many different ways 
in the literature, but the rates tend to be lower with more 
categories and more theoretically interesting coding 
schemes. Reliability rates are not perfect in almost any study 
when elements are individually classified. 

For example, in one experiment, at least two coders (i.e., 
human coders or automated processes for individual classifi 
cation operating according to any Suitable technique) catego 
rize each of 4,169 blog posts. In this experiment, the coders 
agreed on the classification of 66.5 percent of the blog posts; 
they agreed on 71.3 percent of blog posts among those when 
both coders agreed the post contained an opinion; and they 
agreed on 92 percent of the posts for an aggregated classifi 
cation of negative, neutral, or positive opinions among posts 
with opinions. Table 1 gives more detailed information about 
these results. For any two coders, arbitrarily named 1 and 2. 
each row in the table gives the probability of coder 2's clas 
sification given a particular classification d which coder 1 
chose, P(DID=d), with the marginal probability for coder 1 
appearing in the last column, P(D). For instance, when coder 
1 chooses category -2, coder 2 will choose the same category 
70 percent of the time, category -1 10 percent of the time, 
category 0 1 percent of the time, and so on across the first row. 
This matrix is estimated from all 4,169 ordered coding pairs 
from five coders going in both directions. The “misclassifi 
cation’ (or “confusion') matrix in this table includes infor 
mation from all combinations of observed ordered coder 
pairs. These numbers are comparable to other studies of indi 

was drawn directly from the population and little computation vidually classified data. 
is required, although the difference between the two is only 
about two tenths of a percentage point. TABLE 1 

For one exemplary application of the techniques described 55 -2 -1 O 1 2 NA. NB P(D) 
herein, which will have considerably lower RMSE than the 
direct sampling when random sampling from the population -2 70 10 O1 O1 OO .02 16 .28 
is not possible, the RMSE drops fast as the number of indi- . s . 8. 8. . s 
vidually classified elements increase. Even the highest 1 O7 06 08 .2O .25 O1 34 O3 
RMSE, with only 100 elements in the labeled set, is only 60 2 O3 O3 O3 .22 43 O1 25 O3 
slightly higher than 3 percentage points, which would be NA .04 O1 OO .00 OO 81 14 12 
acceptable for many applications (e.g., applications in the NB 10 O7 O2 O2 O2 O4 .75 45 
Social sciences). (For example, most national Surveys have a 
margin of error of at least 4 percentage points, even when Unfortunately, “the classical supervised classification 
assuming random sampling and excluding all other sources of 65 paradigm is based on the assumption that there are no errors 
error.) At about 500 elements, the advantage of more indi- in the true class labels' and “that the classes are well defined' 
vidual classification begins to suffer diminishing returns. In (Hand, 2006). Indeed, many applications, including the blog 
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example above, make this same dubious assumption. The 
problem may be due to “conceptual stretching” (Collier, D. 
and Mahon, J. 1993. “Conceptual Stretching Revisited: 
Adapting Categories in Comparative Analysis.” American 
Political Science Review 87(4 December):845-855) or “con 
cept drift” (Widmer, G. and Kubat, M. 1996. “Learning in the 
presence of concept drift and hidden contexts.” Machine 
Learning 23(1):69-101.) that could in principle be fixed with 
a more disciplined study of the categories or coder training. 
Or it may be that no amount of training could produce 100 
percent reliability due to an inherent, irreducible uncertainty 
in representing human language in fixed categories. To some 
degree the latter is accurate, but a scientific approach to mea 
Surement means one must continually strive for better cat 
egory definition, documentation, training, and evaluation. 
Of course, no matter how careful procedures are, at Some 

point conclusions must be drawn from the data with whatever 
level of misclassification remains. Judging from the litera 
ture, this point is almost always reached prior to eliminating 
all risk of misclassification. Many scholars simply act as if 
there exists no misclassification on average. Discussed below 
are the consequences of this procedure and a way to partially 
ameliorate the problem. 

In some implementations of the techniques discussed 
herein, a technique called simulation-extrapolation 
(SIMEX) proposed by J. Cook and L. Stefanski in “Simu 
lation-extrapolation estimation in parametric measurement 
error models.” Journal of the American Statistical Associa 
tion 89:1314-1328, 1994—may be adapted to the problem of 
imperfectly coded content analyses. SIMEX turns out to be 
closely related to the jackknife (L.A. Stefanski and J. R. Cook 
in “Simulation-Extrapolation: The Measurement Error Jack 
knife.” Journal of the American Statistical Association 
90(432, December): 1247-1256, 1995), and has subsequently 
been applied to several types of models. Below, first offer 
Some intuition is offered, then some formalization, and finally 
an empirical illustration. 

It should be appreciated that the embodiments described 
herein to address imperfect coding can be used together with 
any technique, including the techniques disclosed herein, for 
estimating the distribution of elements among categories, 
such as being implemented as at least a part of block 402 of 
process 400, or block 502 of process 500, both discussed 
above. The embodiments of the invention directed to address 
ing imperfect coding are not limited in this respect and can be 
used with any other technique for categorizing elements or 
determining a distribution of elements. 

To build intuition, one implementation is illustrated by 
considering what occurs during research as a coding scheme 
becomes clearer, the coding rules improve, and coder training 
gets better. For clarity, imagine that through five Successive 
rounds, different, more highly trained coders classify the 
same set of elements with improved coding rules. If done 
well, the results of each round will have higher rates of inter 
coder reliability than the last. The final round will be best, but 
it will still not be perfect. If this process could be continued 
indefinitely, all misclassification may be banished, but this is 
typically infeasible. 
Now Suppose an estimate of the percent of elements in 

category 2 is 5 percent in the first round, 11 percent in the 
second, 14 percent in the third, 19 percent in the fourth, and 23 
percent in the last round. The question, then, is what to do 
once these results are observed. The procedures convention 
ally used would have us use 23 percent as best estimate of the 
proportion in category 2. This is not an unreasonable 
approach, but it appears to leave some information on the 
table and thus might be improved on. In particular, if the 
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proportion of elements in category 2 is increasing steadily as 
the levels of inter-coder reliability improve, then this propor 
tion may be reasonably extrapolated to the point where inter 
coder agreement is perfect. It may be concluded, then, that the 
true proportion in category 2 is actually somewhat larger than 
23 percent. This idea may be formalized by building some 
type of regression model to predict the category 2 proportion 
with the level of inter-coder reliability and extrapolate to the 
unobserved point where reliability is perfect. Since this pro 
cedure involves extrapolation, it is inherently model depen 
dent and so uncertainty from its inferences will exceed the 
nominal standard errors and confidence intervals. However, 
even using the figure from the final round and doing no 
Subsequent processing still involves an extrapolation; it is just 
that the extrapolation ignores the information from previous 
rounds of coding. So using 23 percent as the estimate and 
ignoring this idea is no safer. 

Since firing one's coders after each round of training is not 
feasible in most research, in one exemplary implementation 
of this compensation technique the observed misclassifica 
tions are used to simulate what would have happened to the 
element category proportions if there were even lower levels 
of inter-coder reliability, and extrapolate back to the point of 
no misclassification. An exemplary implementation of this 
SIMEX procedure is shown as process 1500 in FIG. 15, 
which involves five steps (though other processes implement 
ing this procedure may comprise greater or fewer steps). First, 
in block 1502, a compensation module assumes that the esti 
mation method used would give statistically consistent 
answers if it were applied to data with no misclassification. 
The same method applied to error-prone data is presumably 
biased. However, in this problem, the type of misclassifica 
tion turns out to be easy to characterize, as in Table 1. Second, 
in block 1504, the compensation module takes each observed 
data point D, in the labeled set and simulate Merror-inflated 
pseudo-data points, using the misclassification matrix in 
Table 1. This is done by drawing a new value of D, from the 
probability density in the row corresponding to the original 
observed value, effectively drawing D, from P(D.D.) given 
the observed data point D. This step creates a set of simulated 
data set by adding the same amount and type of measurement 
error that exists in the observed data to these pseudo-data. 
This procedure may be repeated with the pseudo-data just 
created to produce a sequence of sets, each with Madditional 
error-inflated pseudo-data sets. Third, in block 1506, the 
compensation module applies an estimator in accordance 
with the techniques described above to each of the simulated 
pseudo-data sets, average over the M simulations for each 
level of added error. This leads to a sequence of pseudo 
estimators, each corresponding to different levels of inter 
coder reliability. Next, in block 1508, the compensation mod 
ule fits a relationship between the proportion of observations 
estimated to be in each category from each error-inflated 
pseudo-data set and the amount of added error. Finally, in 
block 1510, the compensation module extrapolates back to 
the unobserved point of Zero measurement error, transforms 
the results, and the process ends. 

FIG. 16 gives an example of this procedure for one cat 
egory from the blog data. The vertical axis of this graph is the 
proportion of observations in category NB. The horizontal 
axis, labeled C. gives the number of additional units of mis 
classification error added to the original data, with the 
observed data at value 0. The estimate of the element of 
P(D={NB}) from the original data (corresponding to the last 
round of coding from the example in the previous paragraph) 
is denoted with a diamond above the value of zero. A value of 
C. of 1 means that the original data was adjusted according to 
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the misclassification matrix in Table 1 once; 2 means twice, 
etc. Some noninteger values are also included. In the appli 
cation, it seems likely that the proportion of elements esti 
mated that would have been estimated to be in category NB, 
if the coders had perfect rates of inter-coder reliability, would 
be higher than the proportion from the actual observed data. 

All applications begin with the point estimated from the 
observed data at Zero (marked by a diamond in the figure), and 
extrapolate it over to the horizontal axis value of -1, which 
denotes the data with no misclassification error. The implicit 
extrapolation used in almost all prior content analysis 
research occurs by effectively drawing a flat line from the 
diamond to the vertical axis on the left; this flat line is used 
regardless of what information is available. This procedure is 
not always wrong but it comes with no evidence that it is right 
and obviously offers no flexibility when new information 
arises. 
The question is whether there might be sufficient informa 

tion in the simulated error-inflated data to extrapolate better 
than using the existing flat line extrapolation procedure. In 
many cases, there is. In the example in FIG. 15, estimates 
from these error-inflated data also appear, as well as several 
alternative (LOESS-based) models used to form possible 
extrapolations. The result is model dependent by nature, but 
the same is the case whether the information from the simu 
lated data is used or ignored. 

FIG. 17 presents analogous results from the remaining six 
element categories. In each case, there appears to be some 
additional information that may be useful in extrapolating the 
true proportion of elements to the left of the curve. Some of 
the uncertainty in extrapolation is illustrated in the graphs via 
separate lines, each from a different method used to extrapo 
late, but of course numerous other models could have been 
used instead. The key point of this section is that extrapolation 
is necessary whether or not this SIMEX procedure is used. 
The only other choice is to go back to trying to improve the 
categories, coding rules, and coder training. 
Other Problems that May be Experienced in Some Applica 
tions 

Discussed next are five problems that could arise that, if not 
addressed, could cause Some of the techniques described 
herein to be biased or inefficient when applied to some appli 
cations and Some types of Source data, as well as ways to 
ameliorate these problems. 

For some embodiments of the invention, a key issue is the 
assumption in Equation 12 that P(SID) is the same in the 
labeled and population sets. So if elements are being studied 
over a long time period, where the language used to charac 
terize certain categories is likely to change, it would not be 
optimal to select the labeled test set only from the start of the 
period. Checking whether this assumption holds is not diffi 
cult and merely requires individually classifying some addi 
tional elements closer to the quantity presently being esti 
mated and using them as a validation test set. If the data are 
collected over time, one can either individually classify sev 
eral data sets from different time periods or gradually add 
classified elements collected over time. 

Second, as King and Lu (2007) describe, each category of 
D should be defined so as not to be too heterogeneous. If a 
category is highly heterogeneous, then there may not be a 
single set of word profiles that could be used to characterize 
the language used for all elements in that category. This can 
be seen when one tries to describe the category and finds 
oneself using many different examples. This problem seems 
more likely to occur for residual or catch-all categories. Imag 
ine how category “NB' (not a blog) in the data could be 
described. This is difficult since there are innumerable types 
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of web sites that are not blogs, each with potentially very 
different language; yet this category was beneficial in the 
above example since the web search algorithm was not per 
fect. More bias may be found in estimating category NB than 
the others in the exemplary categorization. The Small but 
noticeable bias in this category is apparent at the top line on 
the left in FIG. 13. 

Third. Some implementations of the techniques described 
herein involve choosing the number of word stems to use in 
each randomly chosen Subset, when estimating P(D) in appli 
cations wherein the source data comprises textual elements. 
While choosing the number of random subsets may be easy in 
Some applications (the more the better, and so like any simu 
lation method should be chosen based on available computer 
time and the precision needed), the number of word stems to 
use in each random Subset should be chosen more carefully. 
Choosing too few or too many will leave P(S) and P(SID) too 
sparse or too short and may result in attenuation bias due to 
measurement error in P(SID), which serve as the “explana 
tory variables' in the estimation equation. To make this 
choice in practice, a cross-validation technique may be used, 
Such as by dividing the labeled set into a training and test set. 
(This division may be made randomly to ensure that this 
auxiliary study is not confounded by potential violations of 
the assumption in Equation 12.) The algorithm is not very 
sensitive to this choice, and so there is typically a range of 
values that work well. In practice, the number of word stems 
to choose to avoid sparseness bias mainly seems to be a 
function of the number of unique word stems in the elements. 
Although one can make the wrong choice, and making the 
right choice may take some effort, fixing any problem that 
may arise via these types of cross-validation tests is not dif 
ficult. 

Fourth, a reasonable number of elements in each category 
of Dshould be individually classified. Although the efficiency 
of embodiments of the invention was studied as a function of 
the number of individually classified elements, these results 
would not hold if by chance some categories had very few 
individually classified elements and small differences in the 
proportions in these population categories were significant to 
a particular application. This makes sense, of course, since 
the method relies upon examples from which to generalize. 
Discovering too few examples for one or more categories can 
be dealt with in several ways. Most commonly, one can alter 
the definition of the categories, or can change the classifica 
tion rules. 

However, even if examples of some categories are rare, 
they may be sufficiently well represented in the much larger 
population set to be of interest. To deal with situations like 
this, it is preferable to find more examples from these rela 
tively rare categories. Doing so by merely increasing the size 
of the individually classified data set would usually not be 
feasible and in any event would be wasteful given that it 
would result in many more coded elements in the more preva 
lent categories, but it may be possible to use available meta 
data to find the extra elements with higher probability. In the 
blogs data, blog posts of certain types may be found via links 
from other posts or from popular directories of certain types 
of blogs. Fortunately, the labeled set is assumed to be gener 
ated conditional on the categories, and so no bias is induced if 
extra examples of certain categories are added. In other 
words, P(D) is already assumed to differ in the labeled and 
population sets and so selecting on D to over-represent some 
categories causes no difficulties with the techniques 
described herein. 

Finally, techniques operating according to the principles 
disclosed herein rely upon access to reliable information. The 
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original elements should contain the information needed, the 
individually classification steps should be reliable enough to 
extract the information from the elements, and the abstract 
quantitative summary of the element (in S) should be a suf 
ficiently accurate representation and enough to estimate the 
quantities of interest. Each of these steps should involve con 
siderable thought and careful study. For example, elements 
that do not contain the information needed should not be used 
to estimate quantities of interest. If humans cannot code ele 
ments into well-defined categories with some reasonable 
level of reliability, then automated procedures are unlikely to 
Succeed at the same task. And of course many choices are 
available in producing abstract numerical Summaries of writ 
ten text elements. 

Throughout all these potential problems, the best approach 
seems to be the radically empirical procedure Suggested in the 
Supervised learning literature: If the procedure chosen works, 
it works; if it doesn't, it doesn’t. And so it is preferable to 
verify that procedures work, subdividing a labeled set into 
training and (truly out of sample) test sets and directly testing 
hypotheses about the success of the procedure directly. This 
should then ideally be repeated with different types of labeled 
test SetS. 

Relatedly, standard errors and confidence intervals take a 
very different role in this type of research than the typical 
observational Social Science work. Unlike many social sci 
ence problems, ifuncertainty is too large, it may be reduced 
by individually classifying some additional elements. In fact, 
sequential sampling is perfectly appropriate: After finding a 
valid categorization scheme, individually classify 100 ele 
ments and compute the quantities of interest and their confi 
dence intervals or standard errors. If these estimates indicate 
more uncertainty than desired, individually classify more 
elements, add them to the first set, and reestimate. One can 
continue this procedure until one's confidence intervals are 
the desirable length. No bias will be induced by this sequen 
tial sampling plan. 
Choosing Element Categories 
An important part of any content analysis project, using 

either an entirely individual classification approach or some 
Supervised learning method, is producing an acceptable cat 
egorization scheme. The difficulty is often Surprising and 
frustrating to those who come anew to content analysis 
projects, but obvious once tried. The problem (and opportu 
nity) is that human language and reasoning admits to an 
extraordinarily large and complicated set of possible 
expressed opinions, and no theory exists which can reliably 
predict what categorization scheme will work for any given 
set of elements ex ante. 

Unfortunately, these problems are not often discussed in 
sufficient detail in published research. Although it appears to 
be the same in most areas of application, Kolbe and Burnett 
(“Content-Analysis Research: An Examination of Applica 
tions with Directives for Improving Research Reliability and 
Objectivity.” The Journal of Consumer Research 18(2):243 
250. 1991) summarize an extensive review of content analy 
ses in consumer research by writing "Most factors pertaining 
to objectivity were either unreported or unattended by 
authors. Problems with reliability reporting . . . were also 
present.’ Social science content analysis literature and expe 
rienced researches in the area indicate that a great deal of 
work typically goes into improving reliability. However, this 
work is not often discussed in published work, Success 
remains at best uneven, and intercoder reliability statistics go 
unreported (or not fully reported) in about half of all pub 
lished content analysis work. Some Suggestions are therefore 
offered below. While the techniques described herein can be 
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used with a labeled set produced using any technique, below 
are some suggestions for effective coding. 

It should be appreciated that the suggestions offered below 
may improve category selection in some, but not necessarily 
all, applications, and that categories may be selected in any 
Suitable manner. The invention is not limited to operating 
with any particular number or type of categories, nor to oper 
ating with any particular process or technique for selecting 
categories. 
The basic rules of coding are: (1) Find a categorization 

scheme that encodes the Social Science question being asked 
in categories that are mutually exclusive (so each element 
goes into only one category) and exhaustive (so all elements 
are classified). The categories may be purely nominal, 
ordered, partially ordered, unidimensional, multidimen 
sional, or mixed. If the categories of interest are not mutually 
exclusive, researchers should determine subsets that are 
mutually exclusive, or else can categorize elements on mul 
tiple dimensions. The coding scheme used above in the blog 
example illustrates a number of these features. One possibil 
ity not included is categories with higher dimensional order 
ings, such as affect by partisanship, in addition to categories 
like NA and NB. One can also code the same elements in 
multiple parallel categorization schemes. (2) Produce a cod 
ing manual or set of classifying rules clear enough so that 
coders (e.g., human workers or automated classification pro 
cesses) can be trained, at least in principle, by looking only at 
the manual and not querying operators or Supervisors (thus 
ensuring that the research procedures are fully public, do not 
require the Supervisors involvement, and so are replicable at 
least in principle). (3) Measure the extent to which different 
classifiers can classify the same elements in the same ways 
(i.e., measure inter-classifier reliability). And (4) check for 
validity, ideally by comparison to Some external gold stan 
dard, or more commonly in practice by the researcher reading 
and checking that the categories and codings reflect the theo 
retical concepts of interest. Of course, one cannot have valid 
ity without reliability and so much of the work in producing a 
coding scheme involves iterating between category definition 
and inter-coder reliability checks. 

Checking inter-coder reliability is time-consuming and 
expensive, and ensuring that communications with coders are 
formalized in a set of written documents sometimes feels like 
an unnecessary hurdle in the way of progress. However, rig 
orous evaluation—large numbers of elements coded by two 
or more coders who only read a set of coding rules and do not 
interact with each other while coding has no Substitutes. 
Similarly, the various compromises that are made, such as 
having a third coder resolve discrepancies, or having two 
coders who disagree compare their respective reasoning or, in 
the event that coders are humans, talk out their differences, 
may often be reasonable compromises after a coding scheme 
is established, but they can make rigorous evaluation difficult 
if not impossible. 
A fundamental difficulty in meeting these rules is that 

categorization schemes that seem theoretically appropriate 
before confronting the data often turn out to have low inter 
coder reliability. Studying the exceptions then quickly reveals 
problems with the “theory.” Adjustments can then go in two 
directions, often at the same time. One is to further articulate 
the categories, and the other is to simplify, usually by com 
bining categories. The former may be theoretically more 
attractive, but it imposes even more burdens on coders, and so 
can lead to lower levels of inter-coder reliability. 

These difficulties (and others) are illustrated below through 
the extensive attempts to find appropriate coding schemes for 
blogs for the example above. For one simple example, a 
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dichotomous coding rule was used for whether a blog post 
was about the policies of President Bush and his administra 
tion or his personal character. This is a standard theoretical 
distinction in a large body of research, and is represented in 
many Survey questions, theoretical discussions, and empiri 
cal analyses. But all this only means that the distinction is 
logically consistent and of theoretical interest; it does not 
mean that ordinary people express themselves the way these 
and other creative professional political Scientists conceptu 
alize the world. Indeed, it was found that no matter how 
precise the coding rules were made, and how the coders were 
trained, the inter-coder reliability rates in classifying accord 
ing to this rule were lower than expected. 

For example, consider the following two excerpts, each 
from a separate blog post, which clearly do not fit the policy/ 
character distinction: 

Example 1: "...What do I see in Bin Laden's words? I see 
a very desperate criminal trying in every way he knows to get 
us to agree to stop pushing him. I see that we are winning and 
he knows it, thus he will try to hit us in the spots that he thinks 
are weak so that we will give up. That means he will find the 
lies to which he discerns that Americans are susceptible and 
tell them to us. I am glad once again that Bush is president and 
not someone who would back down in front of terrorist 
threats.”(http://floa.blogspot.com/2006 01 01 archive. 
html) 

Example 2: "In spite of market and administration hype, 
the economy is on the decline. There are no positive trends. 
The latest unemployment statistics are deliberate, numerical 
deceptions. Using the workforce participation rate used in 
January of 2001, the current unemployment rate is actually 
7.2 percent, not 5.2 percent as deceptively stated by the Bush 
administration. (http://unlawfulcombatint.blogspot.com/ 
2006/11/economy-updates.html) 

Exceptions like these may be responded to with various 
common coding tricks. For example, coders may be 
instructed to identify the primary thrust of the criticism, and/ 
or instructed that any criticism of policy should be classified 
as policy even if it also mentions character attributes. Coders 
may also be instructed that references only to specific policy 
actions should be coded as policy. Coding rules may be estab 
lished wherein posts which do not reference specific policies 
are to be coded as character. Categories may be further articu 
lated, by including a “both category, in addition to “policy” 
and "character to deal explicitly with ambiguous posts. In 
the blog example, throughout all these attempted Solutions 
inter-coder reliability remained low. It turns out that deciding 
when a post was “both was itself highly ambiguous, and that 
category turned out to have almost Zero inter-coder reliability. 
No coding scheme for this distinction came close. Thus, in the 
blog example above it was determined that a categorization 
scheme based on this standard political Science distinction 
was not feasible to use for categorizing political commentary 
by ordinary Americans. 
Selection from King and Lu 
A portion of the King and Lu paper of 2007, described 

above and incorporated herein by reference, is now repro 
duced herein. King and Lu apply some of the techniques 
above to verbal autopsy data to determine a distribution of 
causes of death. This selection is offered herein to provide 
another example of applications of the techniques described 
above, particularly in the case of data that may be considered 
partially structured. 

National and international policymakers, public health 
officials, and medical personnel need information about the 
global distribution of deaths by cause in order to set research 
goals, budgetary priorities, and ameliorative policies. Yet, 
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only 23 of the world’s 192 countries have high quality death 
registration data, and 75 have no cause-specific mortality data 
at all. Even if data of dubious quality is included, less than a 
third of the deaths that occur worldwide each year have a 
cause certified by medical personnel. 

Verbal autopsy is a technique "growing in importance' for 
estimating the cause-of-death distribution in populations 
without vital registration or other medical death certification. 
It involves collecting information about symptoms (including 
signs and other indicators) from the caretakers of each of a 
randomly selected set of deceased in some population of 
interest, and inferring the cause of death. Inferences in these 
data are extrapolated from patterns in a second data set from 
a nearby hospital where information on symptoms from care 
takers as well as validated causes of death are available. 

Verbal autopsy studies are now widely used throughout the 
developing world to estimate cause-specific mortality, and 
are increasingly being used for disease Surveillance and 
sample registration. Verbal autopsy is used on an ongoing 
basis and on a large scale in India and China, and in 36 
demographic surveillance sites around the world. The tech 
nique has also proven useful in studying risk factors for 
specific diseases, infectious disease outbreaks, and the effects 
of public health interventions. 

In this paper, the best current verbal autopsy approaches 
and the not-always-fully-appreciated assumptions underly 
ing them are described. It is also shown that a key problem 
researchers have in Satisfying most of the assumptions in real 
applications can be traced to the constraint existing methods 
impose by requiring the analysis of only one cause of death at 
a time. Current methods are generalized to allow many causes 
of death to be analyzed simultaneously. This simple generali 
Zation turns out to have some considerable advantages for 
practice, such as making it unnecessary to conduct expensive 
physician reviews, specify parametric Statistical models that 
predict the cause of death, or build elaborate expert algo 
rithms. Although the missing (cause of death) information 
guarantees that Verbal autopsy estimates always have an 
important element of uncertainty, the new method offered 
here greatly reduces the unverified assumptions necessary to 
draw valid inferences. 

Denote the cause of death (for possible causes j=1,..., J) 
of individual i as D. j. Bereaved relatives or caretakers are 
asked about each of a set of symptoms (possibly including 
signs or other indicators) experienced by the deceased before 
death. Each symptom k (for possible symptoms k-1,..., K) 
is reported by bereaved relatives to have been present, which 
are denoted for individualias S=1, or absent, S-0. The set 
of symptoms reported about an individual death, {S,, . . . . 
Sk}, is summarized as the vector S. Thus, the cause of death 
D, is one variable with many possible values, whereas the 
symptoms S, constitute a set of variables, each with a dichoto 
mous OutCOme. 

Data come from two sources. The first is a hospital or other 
validation site, where both S, and D, are available for each 
individual i (i-1, ..., n). The second is the community or 
Some population about which an inference is desired, where 
S (but not D.) is observed for each individual 1 (l=1,..., L). 
Ideally, the second source of data constitutes a random 
sample from a large population of interest, but it could also 
represent any other relevant target group. 
The quantity of interest for the entire analysis is P(D), the 

distribution of cause-specific mortality in the population. 
Public health scholars are not normally interested in the cause 
of death D, of any particular individual in the population 
(although some current methods require estimates of these as 



US 9,189,538 B2 
39 

intermediate values to compute P(D)), they are interested in 
the cause of death for subgroups. Such as age, sex, or condi 
tion. 

The difficulty of verbal autopsy analyses is that the popu 
lation cause of death distribution is not necessarily the same 
in the hospital where D is observed. In addition, researchers 
often do not sample from the hospital randomly, and instead 
over-sample deaths due to causes that may be rare in the 
hospital. Thus, in general, the cause of death distribution in 
the two samples cannot be assumed to be the same: P(D)2P" 
(D). 

Since symptoms are consequences of the cause of death, 
the data generation process has a clear ordering: Each disease 
or injury D produces some symptom profiles (sometimes 
called “syndromes” or values of S) with higher probability 
than others. These conditional probability distributions are 
represented as P'(SID) for data generated in the hospital and 
P(SID) in the population. Thus, since the distribution of 
symptom profiles equals the distribution of symptoms given 
deaths weighted by the distribution of deaths, the symptom 
distribution will not normally be observed to be the same in 
the two samples: P(S)z P(S). 

Whereas P(D) is a multinomial distribution with J out 
comes, P(S) may be thought of as either a multivariate distri 
bution of K binary variables or equivalently as a univariate 
multinomial distribution with 2 possible outcomes, each of 
which is a possible symptom profile. The 2' representation is 
usually used. 

The most widely used current method for estimating cause 
of death distributions in verbal autopsy data is the following 
multi-stage estimation strategy. 

1. Choose a cause of death, which is referred to here as 
cause of death D=1, apply the remaining steps to estimate 
P(D=1), and then repeat for each additional cause of interest 
(changing 1 to 2, then 3, etc). 

2. Using hospital data, develop a method of using a set of 
symptoms Sto create a prediction for D. labeled D (and which 
takes on the value 1 or not 1). Some do this directly using 
informal, qualitative, or deterministic prediction procedures, 
Such as physician review or expert algorithms. Others use 
formal statistical prediction methods (called “data-derived 
algorithms' in the Verbal autopsy literature). Such as logistic 
regression or neural networks, which involve fitting P(DIS) 
to the data and then turning it into a 0/1 prediction for an 
individual. Typically this means that if the estimate of 
P"(D=1|S) is greater than 0.5, set the prediction as D=1 and 
otherwise set D-1. Of course, physicians and those who 
create expert algorithms implicitly calculate P'(D=1|S), even 
if they never do so formally. 

3. Using data on the set of symptoms for each individual in 
the community, S, and the same prediction method fit to 
hospital data, P'(D=1|S), create a prediction D, for all indi 
viduals sampled in the community (l=1,..., L) and average 
them to produce a preliminary or "crude' estimate of the 
prevalence of the disease of interest, P(D-1) x', 'D/L. 

4. Finally, estimate the sensitivity, P(D=1|D=1), and 
specificity, P(D-21 Dz1), of the prediction method in hospi 
tal data and use it to “correct the crude estimate and produce 
the final estimate: 

1- P(b + 1D + 1) (14) 
)-1 - P(D + 1D + 1) 
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5. This correction, Sometimes known as “back calcula 

tion”, is useful because the crude prediction, P(D=1), can be 
inaccurate if sensitivity and specificity are not 100%. 
A variety of creative modifications of this procedure have 

also been tried. These include meta-analyses of collections of 
studies, different methods of estimating D, many applications 
with different sets of symptoms and different survey instru 
ments, and other ways of combining the separate analyses 
from different diseases. See also work in statistics and politi 
cal Science that use different approaches to methodologically 
related but substantively different problems. 
The method described above makes three key assumptions 

that are described below. Then in the following section, a 
generalized approach is developed that reduces reliance on 
the first assumption and renders the remaining two unneces 
Sary. 
The first assumption is that the sensitivity and specificity of 

Destimated from the hospital data are the same as that in the 
population: 

The literature contains much discussion of this assump 
tion, the variability of estimates of sensitivity and specificity 
across sites, and good advice about controlling their variabil 
ity. 
A less well known but worrisome aspect of this first 

assumption arises from the choice of analyzing the J-category 
death variable as if it were a dichotomy. Because of the 
composite nature of the aggregated D z1 category of death, it 
is assumed here that what makes up this composite is the same 
in the hospital and population. If it is not, then the required 
assumption about specificity (i.e., about the accuracy of esti 
mation of this composite category) cannot hold in the hospital 
and population, even if sensitivity is the same. In fact, satis 
fying this assumption is more difficult than may be generally 
understood. To make this point, the decomposition of speci 
ficity is first assumed to be one minus the sum of the prob 
ability of different misclassifications times their respective 
prevalences: 

P(D = i) (16) 
PD + 1D + 1) P(D + 1) 

which emphasizes the composite nature of the Dz1 cat 
egory. Then it is asked: under what conditions can specificity 
in the hospital equal that in the population if the distribution 
of cause of death differs? The mathematical condition can be 
easily derived by substituting Equation 16 into each side of 
the second equation of Equation 14 (and simplifying by drop 
ping the “1—” on both sides): 

17 
P(D = i) (17) 

If this equation holds, then this first assumption holds. And 
if J=2, this equation reduces to the first line of Equation 15 and 
So, in that situation, the assumption is unproblematic. 

However, for more than two diseases specificity involves a 
composite cause of death category. It is known that the dis 
tribution of causes of death (the last factor on each side of 



US 9,189,538 B2 
41 

Equation 17) differs in the hospital and population by design, 
and so the equation can hold only if a miraculous mathemati 
cal coincidence holds, whereby the probability of misclassi 
fying each cause of death as the first cause occurs in a pattern 
that happens to cancel out differences in the prevalence of 5 
causes between the two samples. For example, this would not 
occur according to any theory or observation of mortality 
patterns offered in the literature. Verbal autopsy scholars rec 
ognize that some values of sensitivity and specificity are 
impossible when Equation 14 produces estimates of P(D=1) 
greater than one. They then use information to question the 
values of, or modify, estimates of sensitivity and specificity, 
but the problem is not necessarily due to incorrect estimates 
of these quantities and could merely be due to the fact that the 
procedure requires assumptions that are impossible to meet. 
In fact, as the number of causes of death increase, the required 
assumption can only hold if sensitivity and specificity are 
each 100 percent. This is not the case in real data. 
The text describes how this first assumption can be met by 

discussing specificity only with respect to cause of death 1. In 
the general case, Equation 17 for all causes requires satisfying 

2,P(De Déj)-(J-2)=x(P(Dai Dai)+P(D-j|D=i)P 
(D-i) (18) 

For small JD2, this will hold only if a highly unlikely math 
ematical coincidence occurs; for large J, this condition is not 
met in general unless sensitivity and specificity is 1 for all j. 
The second assumption is that the (explicit or implicit) 

model underlying the prediction method used in the hospital 
must also hold in the population: P(DIS)=P(DIS). For 
example, if logistic regression is the prediction method, this 
assumption is made by taking the coefficients estimated in 
hospital data and using them to multiply by symptoms col 
lected in the population to predict the cause of death in the 
population. This is an important assumption, but not a natural 
one since the data generation process is the reverse: P(SID). 
And, even if the identical data generation process held in the 
population and hospital, P(SID)=P(SID), there would be no 
reason to believe that P(DIS)=P(DIS) holds. The assumption 
might hold by luck, but coming up with a good reason why it 
should be believed that this holds in any real case seems 
unlikely. 

This problem is easy to see by generating data from a 
regression model with D as the explanatory variable and Sas 
the simple dependent variable, and then regressing S on D: 
Unless the regression fits perfectly, the coefficients from the 
first regression do not determine those in the second. Simi 
larly, when Spring comes, one is much more likely to see 
many green leaves; but visiting the vegetable section of the 
supermarket in the middle of the winter seems unlikely to 
cause the earth's axis to tilt toward the sun. Of course, it just 
may be that a prediction method can be found for which 
P(DIS)=P'(DIS) holds, but knowing whether it does or even 
having a theory about it seems unlikely. It is also possible, 
with a small number of causes of death, that the sensitivity 
and specificity for the wrong model fit to hospital data could 
by chance be correct when applied to the population, but it is 
hard to conceive of a situation when one would know this ex 
ante. This is especially true given the issues with the first 
assumption: the fact that the composite Dz1 category is by 
definition different in the population and hospital implies that 
different symptoms will be required predictors for the two 
models, hence invalidating this assumption. 
An additional problem with the current approach is that the 

multi-stage procedure estimates P(D) for each separately, 
but for the ultimate results to make any sense the probability 
of a death occurring due to some cause must be 100%: X, P 
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(D)=1. This can happen if the standard estimation method is 
used, but it will hold only by chance. 
The key problem underlying the Veracity of each of the 

assumptions above can be traced to the practice of sequen 
tially dichotomizing the J-category cause of death variable. In 
analyzing the first assumption, it is seen that specificity can 
not be equal in hospital and population data as the number of 
causes that make up the composite residual category gets 
large. In the second assumption, the practice of collapsing the 
relationship between S and D into a dichotomous prediction, 
D, requires making assumptions opposite to the data genera 
tion process and either a Sophisticated Statistical model, oran 
expensive physician review or set of expert algorithms, to 
summarize P(DIS). And finally, the estimated cause of death 
probabilities do not necessarily Sum to one in the existing 
approach precisely because D is dichotomized in multiple 
ways and each dichotomy is analyzed separately. 

Dichotomization has been used in each case to simplify the 
problem. However, it is shown below that most aspects of the 
assumptions with the existing approach are unnecessary once 
the J-category cause of death variable is treated as having J 
categories. Moreover, it is simpler conceptually than the cur 
rent approach. This technique begins by reformulating the 
current approach so it is more amenable to further analysis 
and then generalizing it to the J-category case. 
Under the current methods assumption that sensitivity and 

specificity are the same in the hospital and population, the 
back-calculation formula in Equation 1 can be rearranged as 

and Equation 5 rewritten in equivalent matrix terms as 

where the extra notation indicates the dimension of the matrix 
or vector. So P(D) and P(D) are now both 2x1 vectors, and 
have elements |P(D-1).P(D-1)' and P(D-1), P(Dz1)', 
respectively; and P(DID) is a 2x2 matrix where 

Whereas Equation 14 is solved for P(D=1) by plugging in 
values for each term on the right side, Equation 20 is solved 
for P(D) by linear algebra. Fortunately, the linear algebra 
required is simple and well known from the least squares 
solution inlinear regression. P(D) is thus recognized as taking 
the role of a “dependent variable.” P(DID) as two “explana 
tory variables, and P(D) as the coefficient vector to be solved 
for. Applying least Squares yields an estimate of P(D), the first 
element of which, P(D=1), is exactly the same as that in 
Equation 10. Thus far, only the mathematical representation 
has changed; the assumptions, intuitions, and estimator 
remain identical to the existing method described above. 
The advantage of Switching to matrix representations is 

that they can be readily generalized, which can be done in two 
important ways. First, the modeling necessary to produce the 
cause of death for each individual D is dropped, and S is used 
in its place directly. And second, D is not dichotomized, but 
instead treated as a full J-category variable. Both generaliza 
tions can be implemented via a matrix expression that is the 
direct analogue of Equation 19: 
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(21) 

The quantity of interest in this expression remains P(D). 
Although nonparametric estimation methods may be used, in 
principle P(S) could be estimated by direct tabulation, by 
simply counting the fraction of people in the population who 
have each symptom profile. Since one does not observe and 
cannot directly estimate P(SID) in the community (because D 
is unobserved), it is estimated here from the hospital and an 
equality P(SID)=P(SID) is assumed. Also, P'(SID) is esti 
mated for each cause of death in the same way as done for 
P(S). 
The only assumption required for connecting the two 

samples is P(SID)=P(SID), which is natural as it directly 
corresponds to the data generation process. It is not assumed 
that P(S) and P(S) are equal, P(D) and P(D) are equal, or 
P(DIS) and P'(DIS) are equal. In fact, prediction methods for 
estimating P(DIS) or D are entirely unnecessary here, and so 
unlike the current approach, this approach does not require 
parametric statistical modeling, physician review, or expert 
algorithms. 

Equation 7 can be solved for P(D) directly. This can be 
done conceptually using least squares. That is, P(S) takes the 
role of a “dependent variable.” P(SID) takes the role of a 
matrix of J'explanatory variables, each column correspond 
ing to a different cause of death, and P(D) is the “coefficient 
vector” with Jelements for which a solution is desired. This 
procedure can also be modified using any suitable methods to 
ensure that the estimates of P(D) are each between Zero and 
one and together Sum to one by changing least squares to 
constrained least squares. 

Although producing estimates from this expression 
involves some computational complexities, this is a single 
equation procedure that is conceptually far simpler than cur 
rent practice. As described above, the existing approach 
requires four steps, applied sequentially to each cause of 
death. In contrast, estimates from this proposed alternative 
only require understanding each term in Equation 19 and 
solving for P(D). 

Since deaths are not observed in populations in which 
Verbal autopsy methods are used, realistic validation of any 
method is, by definition, difficult or impossible. Simulations 
of this method are presented below in two separate ways in 
data from China and Tanzania. 

China: An analysis was done of 2,027 registered deaths 
from hospitals in urban China collected and analyzed by Alan 
Lopez and colleagues. Seventeen causes of death were coded, 
and 56 (yes or no) symptoms were elicited from caretakers. 
Three separate analyses were conducted with these data. The 
first test was designed to meet the assumptions of the method 
by randomly splitting these data into halves. Although all 
these data were collected in hospitals, where both Sand D can 
be observed, the first set is labeled “hospital data.” for which 
both S and D are used, and the second “population data.” for 
which only S is used during estimation. An actual verbal 
autopsy analysis is emulated by using these data to estimate 
the death frequency distribution, P(D), in the “population 
data.” Finally, for validation, the actual cause of death vari 
able for the “population data” that were set aside during the 
analysis is unveiled and compared to the estimates. 
The estimates appear in the left graph of FIG. 18, which 

plots on the horizontal axis a direct sample estimate—the 
proportion of the population dying from each of 16 causes— 
and on the vertical axis an estimate from the Verbal autopsy 
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method. Since both are sample-based estimates and thus mea 
sures with error, if the method predicted perfectly, all points 
would fall approximately on the 45 degree line. Clearly, the fit 
of the estimates to the direct estimates of the truth is fairly 
close, with no clear pattern in deviations from the line. 

For a more stringent test of the approach, the same sample 
is split into 980 observations from hospitals in large cities 
(Beijing, Shanghai, and Guangzhou) and 1,045 observations 
from hospitals in smaller cities (Haierbin, Wuhan, and 
Chendu). Each group then takes a turn playing the role of the 
“population” sample (with known cause of death used only 
for validation) and the other as the actual hospital sample. 
This is a more difficult test of the method than would be 
necessary in practice, since researchers would normally col 
lect hospital data from a facility much closer to, part of, or 
more similar to the population to which they wish to infer. 
The right two graphs in FIG. 18 give results from this test. 

The middle graph estimates the Small city cause of death 
distribution from the large city hospitals, whereas the right 
graph does the reverse. The fit between the directly estimated 
true death proportions and the estimates of the method in both 
is slightly worse than for the left graph, where the assump 
tions were true by construction, but predictions in both are 
still excellent. 

Although, to reduce graphical clutter, all these error esti 
mates are not added to the graph, the median Standard error of 
cause specific-mortality from this procedure is 5.8% larger 
than for the directly estimated proportion of the sample dying 
from cause j(i.e., D, the standard error for which is approxi 
mately 

WD (1-D)/n ). 

Obviously, the reason Verbal autopsy procedures are neces 
sary is that direct estimates from the population are unobtain 
able, but it is encouraging that the uncertainty estimates are 
not that much larger than if one was able to measure causes of 
death directly. 

Tanzania: The next example analyzes cause-specific mor 
tality from a verbal autopsy study in Tanzania of adults and 
children. The adult data include 1,392 hospital deaths and 314 
deaths from the general population, about which 51 symp 
toms questions and 31 causes of death were collected. The 
special feature of these data is that all the population deaths 
have medically certified causes, and so one can set aside that 
information and use it to validate the approach. Again, S and 
D from the hospital and S from the population are used in an 
attempt to estimate P(D) in the population, using D from the 
population only for validation after the estimation is com 
plete. 
The results for adults appear in the left graph in FIG. 19. As 

with the China data, both the direct estimate on the horizontal 
axis and the estimate on the vertical axis are measured with 
error. In this very different context, the fit is approximately the 
same as for the China data. The median Standard error (not 
shown) is, as for China, 11% higher than the direct sample 
estimate. 
The data set on children has 453 hospital observations, 42 

population observations, 31 symptoms, and 14 causes of 
death. FIG. 19 also includes these estimates (on the right). 
Even in this smaller sample, the fit between the direct esti 
mate on the horizontal axis and the estimate from the verbal 
autopsy method on the vertical axis is still very close. 
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Five interpretations of this approach are now offered. First, 
the key assumption of the method connecting the two samples 
is that P(SID)=P(SID). This assumption would fail for 
example for symptoms that doctors make relatives more 
aware of in the hospital; following standard advice for writing 
Survey questions simply and concretely can eliminate many 
of these issues. Another example would be if hospitals keep 
patients alive for certain diseases longer than they would be 
kept alive in the community, then they may experience dif 
ferent symptoms. In these examples, and others, an advantage 
of this approach is that researchers have the freedom to drop 
symptoms that would seem to severely violate the assump 
tion. 

Second, since S contains K dichotomous variables and thus 
2' symptom profiles, P(S) and P(SID) have 2 rows, which 
take the role of “observations” in this linear expression. By 
analogy to linear regression, where more observations make 
for more efficient estimates (i.e., with lower variances), it can 
be clearly seen here that having additional symptoms that 
meet the assumptions of verbal autopsy studies will decrease 
the variance, but not affect the bias, of the estimates of cause 
specific mortality. 

Third, when the number of symptoms is large, direct tabu 
lation can produce an extremely sparse matrix for P(S) and 
P(SID). For example, the data from China introduced above 
have 56 symptoms, and so it is necessary to sort the n=1,074 
observations collected from the population into 2 catego 
ries, which number more than 72 quadrillion. Direct tabula 
tion in this case is obviously infeasible. Instead, an easy 
computational Solution may be applied to this problem based 
on a variant of kernel smoothing, which involves using sub 
sets of symptoms, Solving Equation 10 for each, and averag 
ing. The procedure produces statistically consistent esti 
mates. 

Fourth, a reasonable question is whether expert knowledge 
from physicians or others could somehow be used to improve 
the estimation technique. This is indeed possible, via a Baye 
sian extension of the approach also implemented. However, 
in experimenting with the methods with verbal autopsy 
researchers, few were found who were sufficiently confident 
of the information available to them that they would be will 
ing to add Bayesian priors to the method described here. 
Accordingly, a full Bayesian method is not developed here, 
but it may be noted that if accurate prior information does 
exist in some application and were used, it would improve the 
estimates offered by the approach described herein. 

Finally, the new approach represents a major change in 
perspective in the verbal autopsy field. The essential goal of 
the existing approach is to marshal the best methods to use S 
to predict D. The idea is that if one can only nail down the 
"correct’ symptoms, and use them to generate predictions 
with high sensitivity and specificity, one can get the right 
answer. There are corrections for when this fails, of course, 
but the conceptual perspective involves developing a proxy 
for D. That proxy can be well chosen symptoms or symptom 
profiles, or a particular aggregation of profiles as D. The 
existing literature does not seem to offer methods for highly 
accurate predictions of D, even before the difficulties in ascer 
taining the Success of classifiers are accounted for. An alter 
native approach as described above would also work well if 
symptoms or symptom profiles are chosen well enough to 
provide accurate predictions of D, but accurate predictions 
are unnecessary. In fact, choosing symptoms with higher 
sensitivity and specificity would not reduce bias in the 
approach, but in the existing approach they are required for 
unbiasedness except for lucky mathematical coincidences. 
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Instead of serving as proxies, symptoms in the new 

approach are only meant to be observable implications of D. 
and any Subset of implications are fine. They need not be 
biological assays or in some way fundamental to the defini 
tion of the disease or injury or an exhaustive list. Symptoms 
need to occur with particular patterns more for Some causes of 
death than others, but bigger differences do not help reduce 
bias (although they may slightly reduce the variance). The 
key assumption of this approach is P(SID)=P(SID). Since S 
is entirely separable into individual binary variables, one is at 
liberty to choose symptoms in order to make this assumption 
more likely to hold. The only other criteria for choosing 
symptoms, then, is the usual rules for reducing measurement 
error in Surveys. Such as reliability, question ordering effects, 
question wording, and ensuring that different types of respon 
dents interpret the same symptom questions in similar ways. 
Other previously used criteria, Such as sensitivity, specificity, 
false positive or negative rates, or other measures of predict 
ability, are not of as much relevance as criteria for choosing 
symptom questions. 
By reducing the assumptions necessary for valid inference 

and making it possible to model all diseases simultaneously, 
the methods introduced here make it possible to extract con 
siderably more information from Verbal autopsy data, and as 
a result can produce more accurate estimates of cause-spe 
cific mortality rates. 

Until now, the most successful method may have been 
physician review, which can be expensive as it usually 
involves approximately three physicians, each taking 20-30 
minutes to review each death. Scholars have worked hard, and 
with some Success, at increasing inter-physician reliability 
for individual studies. However, since formalizing and sys 
tematizing the rules any group of physicians use has been 
difficult, the cross-study reliability of this technique has 
remained low. Attempts to formalize physician reviews via 
expert algorithms are reliable by design, but appear to have 
lower levels of validity, in part because many diseases are not 
modeled explicitly. Data-derived (i.e., parametric statistical) 
algorithms are also easily replicable, but they have suffered 
from low levels of agreement with verified causes of death 
and are complicated for large J and in practice the choice of 
model has varied with every application. 

Since this approach makes physician reviews, expert algo 
rithms, and parametric statistical models unnecessary, it costs 
considerably less to implement and is much easier to replicate 
in different settings and by different researchers. The result 
ing increased accuracy of the relatively automated Statistical 
approach, compared to existing methods which require many 
more adhoc human judgments, is consistent with a wide array 
of research in other fields. 

Even with the approach offered here, many issues remain. 
For example, to estimate the distribution of death by age, sex, 
or condition with these methods requires separate samples for 
each group. To save money and time, the methods developed 
here could also be extended to allow covariates, which would 
enable these group-specific effects to be estimated simulta 
neously from the same sample. In addition, Scholars still need 
to work on reducing errors in eliciting symptom data from 
caregivers and validating the cause of death. Progress is 
needed on procedures for classifying causes of death and 
statistical procedures to correct for the remaining misclassi 
fications, and on question wording, recall bias, question 
ordering effects, respondent selection, and interviewer train 
ing for symptom data. Crucial issues also remain in choosing 
a source of validation data for each study similar enough to 
the target population so that the necessary assumptions hold, 
and in developing procedures that can more effectively 
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extrapolate assumptions from hospital to population via 
appropriate hospital Subpopulations, data collection from 
community hospitals, or medical records for a sample of 
deaths in the target population. 
The details of the estimation strategy are now described. 

Instead of trying to use all 2' symptoms simultaneously, 
which will typically be infeasible given commonly used 
sample sizes, it is recognized below that only full rank Subsets 
larger than J with sufficient data are required. Many subsets of 
symptoms are sampled, P(D) estimated in each, and the 
results averaged (or, if prior information is available, average 
using weights). Subsets may be chosen by drawing directly 
from the 2' symptom profiles, but in this example the conve 
nient approach of randomly drawing B-K symptoms is used, 
which is indexed as I(B), and the resulting symptom Sub 
profile is used. This procedure also has a statistical advantage 
in that it is mathematically equivalent to imposing a version of 
kernel Smoothing on an otherwise highly sparse estimation 
task. (More advanced versions of kernel Smoothing might 
improve these estimates further.) 
P(S) is estimated using the population data, and P(S) 

|D) using the hospital data. Denote Y-P(S) and X-P(S 
ID), where Y is of length n, X is nx.J. and n is the subset of the 
2” symptom profiles that were observed. P(D)=f3 is observed 
by regressing Y on X under the constraint that elements of B 
fall on the simplex. The subset size B should be chosen to be 
large enough to reduce estimation variance (and so that the 
number of observed symptom profiles among the 2 possible 
profiles is larger than J) and Small enough to avoid the bias 
that would be incurred from sparse counts used to estimate of 
elements of P(SID). Missing data may be handled by 
deleting incomplete observations within each Subset, by 
model-based imputation, or in any other Suitable manner. 
Although cross-validation can generate optimal choices for 
B, estimates of P(D) are found to be relatively robust to 
choices of B within a reasonable range. In some applications, 
nonlinear optimization procedures may be used to estimate 
P(D) directly, but in other applications this approach tends to 
be sensitive to starting values, such as when J is large. As an 
alternative, in some applications the following estimation 
procedure may be used, which tends to be much faster, more 
reliable, and accurate in practice. 
The following two steps are repeated for each different 

Subset of symptoms and then average the results. The two 
steps involve reparameterization, to ensure XB-1, and step 
wise deletion, to ensure B->0. 

To reparameterize: (a) To impose a fixed value for some 
cause of death, XB, c, rewrite the constraint as CB-1, where 
C is a J-row vector of 1/c. When none of the elements off are 
known a priori, c=1. When Some elements f, such as from 
another data source, are known, the constraint on the rest off 
changes to X, f, c=1-fi, (b) Construct a J-1XJ matrix A of 
rank J-1 whose rows are mutually orthogonal and also 
orthogonal to C, and so CA=0 and AA=1 . A Gram 
Schmidt orthogonalization gives us a row-orthogonal matrix 
G whose first row is C, and the rest is A. (c) Rewrite the 
regressor as X=ZA+WC, where Z is nx.J-1, Wis nx1, and (W. 
Z)G=X. Under the constraint CB-1, one has Y=XB-ZAB+ 
WCB=Zy+W, where Y=AB, and Y is a J-1 vector. (d) Obtain 
the least square estimates (ZZ)'Z' (Y-W). (e) The equality 
constrained B is then B–G'y*, where G=(CA), a JxJ row 
orthogonal matrix derived above, and Y-(1,3). This ensures 
that CB-1. Moreover, Cov(B)=G'Cov(y*)(G)'. 

For Stepwise deletion: (a) To impose normegativity, find 
the B-0 whose associated t-value is the biggest in absolute 
value among all B-0.(b) Remove thei" column of the regres 
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sor X, and go to the reparameterization step again to obtain? 
with the jth element coerced to zero. 

Finally, the estimate of P(D) can be obtained by averaging 
over the estimates based on each Subset of symptoms. The 
associated Standard error can be estimated by bootstrapping 
over the entire algorithm. Subsetting is required because of 
the size of the problem, but because S can be subdivided and 
the existing assumption P(SID)=P(SID) implies P(SID) 
=P(S|D) in each subset, nobias is introduced. In addition, 
although the procedure is statistically consistent (i.e., as n->OO 
with K fixed) the procedure is approximately unbiased only 
when the elements of P(SID) are reasonably well estimated: 
Subsetting (serving as a version of kernel Smoothing) has the 
advantage of increasing the density of information about the 
cells of this matrix, thus making the estimator approximately 
unbiased for a much smaller and reasonably sized sample. 
Through extensive simulations it may be seen that this pro 
cedure is approximately unbiased, and robust even for Small 
sample sizes. 
Advantages of the Principles Discussed Herein 
The techniques discussed herein for analyzing source data 

Such as textual elements and extracting a specific type of 
systematic information from it requires no modeling assump 
tions, no modeling choices, and no complicated Statistical 
approaches, and lets allows for applications in which theo 
retical questions may be posed and answered. Techniques 
operating according to these principles also require far less 
work than projects based entirely on individual classification 
and can be done both fast and in real time. Individual-level 
classification is not a result of some illustrative techniques 
described herein, and so these techniques are not useful for all 
tasks, but numerous quantities of interest, from separate sub 
divisions of the population or different populations, can be 
estimated by these techniques. Techniques described herein 
do benefit from careful efforts to properly define categories 
and to individually classify a small sample of elements. 
Exemplary Implementations of the Techniques Discussed 
Above 
The techniques described above may be implemented in 

any Suitable manner, including, for example, as one or more 
Software packages executing on a computing device(s) or 
system or as an electronic device specifically programmed or 
“hard-wired to carry out tasks associated with these tech 
niques. So components such as digital processors, field-pro 
grammable gates arrays and application-specific integrated 
circuits may be configured to perform the methods discussed 
above, acting upon a target data population provided as an 
input of digital data words from an electronic source, such as, 
for example, web crawling Software configured to crawl a 
blog or blogs specified or of a specified type. 

FIGS. 20A and 20B show different functional components 
which may be implemented by embodiments of the invention, 
though it should be appreciated that the set of functional 
components shown in FIGS. 20A and 20B is merely exem 
plary and that some implementations may employ greater or 
fewer components than shown. In the examples of FIGS. 20A 
and 20B, reference is made to “modules. As stated above, a 
module is a structural component of a system which performs 
a specific operational role, however instantiated, which may 
be a portion of or an entire Software element (e.g., a function 
or a discrete process). A module may comprise computer 
executable instructions, and may be encoded on a computer 
storage medium. Modules may be executed in parallel or 
serially, as appropriate, and may pass information between 
one another using a shared memory on the computeron which 
they are executing, using a message passing protocol or in any 
other suitable way. 
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FIG.20A shows one set of functional components that may 
be employed by an exemplary implementation of a technique 
for performing statistically consistent and approximately 
unbiased estimation of a distribution of digital data elements 
in categories, within the context of such a system providing a 
useful, actionable report on the analysis of data mined from 
one or more text sources. The modules comprise an input 
module 2000 to acceptor retrieve as input a source digital data 
set comprising a plurality of elements. The input module 
2000 may be implemented in any suitable manner, such as by 
the web crawler described above, as a Surveying apparatus, as 
a passive module accepting input provided by another auto 
mated process and/or from a computer storage medium, or in 
any other Suitable manner. The data set accepted by the input 
module 2000 may be accepted in any suitable format, such as 
via any Suitable data structure or as an unstructured (but 
presumably tagged) stream of data. Individual classification 
module 2002 is also shown in FIG. 20A for performing indi 
vidual classification on a Subset of elements to determine a 
labeled set, as described above, based on input comprising 
elements of the set of data accepted by input module 2000. 
Individual classification in module 2002 may be done in any 
Suitable manner, including any suitable automated process 
(e.g., a process which performs searches for words or words 
stems in a provided lexicon and bases classification decisions 
on the word?word stem findings). Estimation module 2004, 
operating according to the techniques described above, 
accepts as input the individual classifications from the indi 
vidual classification module 2002 and performs, in any suit 
able manner including any one or more of the techniques 
described above, an estimation of a distribution of elements of 
the source data in a set of categories. A correction module 
2006 may accept as input digital values for the estimation 
calculated by the estimation module 2004, and may also 
accept the data set from the input module 2000, and performs 
correction of the estimations determined by the estimation 
module 2004. The correction module 2006 may, for example, 
implement the SIMEX procedure described above and shown 
in FIG. 15, or operate in any other suitable manner. Output 
module 2008 accepts as input digital values indicating cor 
rected estimates from correction module 2006 and provides 
results to a user or any Suitable interpretation module for 
using the results in any Suitable manner (e.g., modifying a 
product in response to an estimated distribution of consumer 
opinion, as discussed above). Providing the results may com 
prise, for example, manipulating a display device to present 
the results to the user in a user interface, or may comprise 
encoding digital values representing the results on a computer 
storage medium. 
FIG.20B shows one set of functional components that may 

be employed by an exemplary implementation of a technique 
for performing correction of an aggregation of individual 
classification by conventional methods to determine a statis 
tically consistent and approximately unbiased estimation of a 
distribution of elements in categories, within the context of a 
system providing a useful, actionable report on the analysis of 
data mined from one or more text sources. The modules 
comprise an input module 2020 to accept or retrieve as input 
a source data set comprising a plurality of elements, as well as 
digital values indicating an estimated distribution of elements 
in the overall source data set. The input module 2020 may be 
implemented in any Suitable manner, Such as by a passive 
module accepting input provided by an automated process 
(e.g., a process which performs searches for words or word 
stems in a provided lexicon and bases classification decisions 
on the word/word stem findings) and/or from a computer 
storage medium, or in any other Suitable manner. Estimation 
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module 2022, operating according to the techniques 
described above, accepts as input the individual classifica 
tions of the conventional individual classifier (accepted as 
input by input module 2020 as part of the source data set) and 
performs, in any suitable manner, an estimation of a distribu 
tion of elements of the Source data in categories. A correction 
module 2024 accepts as input digital values indicating the 
distribution of elements calculated by the estimation module 
2022, and performs correction of the estimations in any Suit 
able manner, such as through the SIMEX procedure 
described above and shown in FIG. 15, or may operate in any 
other suitable manner. Output module 2024 accepts digital 
values indicating these corrected results, and provides the 
results to a user or any Suitable interpretation module for 
using the results in any suitable manner (e.g., modifying a 
product in response to an estimated distribution of consumer 
opinion, as discussed above). Providing the results may, for 
example, comprise manipulating a display device to present 
the results to the user in a user interface, or may comprise 
encoding digital values representing the results on a computer 
storage medium. 

It should be appreciated that the illustrative modules shown 
in FIGS. 20A and 20B are merely exemplary of the types of 
modules that may be implemented to employ the techniques 
described herein, and that other modules and combinations of 
modules are possible. 
The aspects of the present invention described herein, 

including the functional modules shown in FIGS. 20A and 
20B, can be implemented on any of numerous computer 
apparatuses and computer system configurations and are not 
limited to any particular type of configuration. For example, 
techniques operating according to Some or all of the prin 
ciples discussed herein may operate on a single multi-purpose 
programmable digital computer apparatus, a coordinated sys 
tem of two or more multi-purpose computer apparatuses shar 
ing processing power and jointly carrying out the techniques 
described herein, a single computer apparatus or coordinated 
system of computer apparatuses (co-located or geographi 
cally distributed) dedicated to executing the techniques 
described herein, one or more application-specifics inte 
grated circuits (ASICs) for carrying out the techniques 
described herein, one or more Field-Programmable Gate 
Arrays (FPGAs) for carrying out the techniques described 
herein, or any other suitable system. FIG. 21 illustrates one 
exemplary implementation in the form of a computer appa 
ratus 2100 that may be used in a system implementing the 
techniques described herein, although others are possible. 
Further, it should be appreciated that FIG. 21 is intended 
neither to be a depiction of necessary components for a com 
puting device to operate as a computer apparatus, nor a com 
prehensive depiction. 

FIG. 21 shows a computer apparatus 2100 that may be 
coupled to a communication network 2108, but it should be 
appreciated that embodiments of the invention may operate 
on a simpler computer system not coupled to a network. 
Computer apparatus 2100 may be any suitable computing 
device for sending and receiving data over a communication 
network 2108, Such as a mainframe, a server, a desktop per 
Sonal computer, and a laptop personal computer, among oth 
ers. It should be appreciated that while computer apparatus 
2100 is shown as a single apparatus, embodiments of the 
invention may execute on a computer apparatus 2100 that 
may be distributed across multiple computers coupled via any 
communication medium (e.g., a network) in any way. 

Communication network 2108 can be any suitable wired 
and/or wireless communication medium or media for 
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exchanging data between two or more computers (e.g., a 
server and a client), including the Internet. 
Computer apparatus 2100 comprises network adapter 2102 

to facilitate communication with other devices connected to 
communication network 2108. Computer apparatus 2100 
also comprising at least one computer-readable medium 2104 
for storing data to be processed and/or instructions to be 
executed by a processor 2106. Processor 2106 enables pro 
cessing of data and execution of instructions. The data and 
instructions may be stored on the at least one computer 
readable medium 2104 and may, for example, enable com 
munication between components of the computer apparatus 
21 OO. 

In accordance with some embodiments of the invention, 
the data and instructions stored on the at least one computer 
readable medium 2104 may comprise a data store comprising 
labeled and unlabeled sets of elements and instructions to 
carry out a method of determining a distribution of unlabeled 
elements among categories, as described above. The data and 
instructions may instead comprise or may further comprise 
data on categorization error rates among labeled elements and 
instructions for correcting that error when determining a dis 
tribution of unlabeled elements among categories, such at the 
SIMEX method described above. 
Computer apparatus 2100 may implement the techniques 

described above in any Suitable manner. For example, in some 
embodiments, computer apparatus 2100 may be a web server 
hosting one or more web pages, scripts, and other web site 
elements which implement the techniques described above 
such that these techniques may be offered via a web site and 
over communication network 2108 (e.g., the Internet). In 
such embodiments, a business offering estimation and clas 
sification services may operate the web site and provide ser 
vices via the techniques described here. Such a web site may, 
for example, accept as input from a client of the business the 
Source data and provide to the client, via a web page, estima 
tion results. In alternative embodiments, computer apparatus 
2100 may be a server or other computing device operating in 
a business, laboratory, or other organization performing esti 
mation and classification according to the techniques 
described herein, and may operate on any source data pro 
vided, such as information provided by a client or information 
generated by research tasks. In Such embodiments, the com 
puter apparatus 2100 may execute Software operating accord 
ing to the techniques discussed herein which was either devel 
oped by the business, laboratory, or other organization, or 
which was provided by a business or other organization pro 
viding estimation and classification services. In further alter 
native embodiments, computer apparatus 2100 may be a per 
Sonal computer or other computing device executing Software 
implementing the techniques described herein but which is 
itself not affiliated with a business, laboratory, or other orga 
nization. The software executing on the personal computer or 
other computing device in this embodiment may have been, 
for example, provided by a business offering estimation and 
classification services. 
Variations 

Having described several aspects of embodiments of this 
invention, it is to be appreciated that various alterations, 
modifications, and improvements will readily occur to those 
skilled in the art. Such alterations, modifications, and 
improvements are intended to be part of this disclosure, and 
are intended to be within the spirit and scope of the invention. 
Accordingly, the foregoing description and drawings are by 
way of example only. FIG. 22 illustrates a method, for 
example, that begins with receiving a first set of elements, 
each element in the first set being assigned to one of a plural 
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ity of categories and having one of a plurality of content 
profiles associated therewith (step 2202). A second set of 
elements is received, each element in the second set having 
one of the content profiles associated therewith (step 2204). 
Based on the content profiles associated with and the catego 
ries assigned to elements in the first set and the content pro 
files associated with the elements of the second set, a distri 
bution of elements of the second set over the categories is 
calculated, which distribution is not constrained to be the 
same as a distribution of elements of the first set over the 
categories, wherein a distribution of elements of the second 
set over the content profiles is not constrained to be the same 
as a distribution of elements of the first set over the content 
profiles (step 2206). In another embodiment, as shown in 
FIG. 23, a set of elements is received (step 2302) and each 
element is assigned to one of a plurality of categories, thereby 
creating a first distribution of the elements over the categories 
(step 2304). Each element is assigned to one of the categories, 
thereby creating a second distribution of the elements over the 
categories (step 2306). Misclassification probabilities are cal 
culated based on the first distribution and the second distri 
bution (step 2308). Pseudo-data is generated based on the 
misclassification probabilities (step 2310). A new distribution 
over the categories and new misclassification probabilities for 
the pseudo-data are calculated (step 2312), and corrected 
distribution of elements over the categories is obtained (step 
2314). 
What is claimed is: 
1. A computer-implemented method, comprising: 
(a) receiving a first set of elements, each element in the first 

set being assigned to one of a plurality of categories and 
having one of a plurality of word-stem profiles associ 
ated therewith: 

(b) receiving a second set of elements, each element in the 
second set having one of the word-stem profiles associ 
ated therewith; and 

(c) using a processor to calculate, based on the word-stem 
profiles associated with and the categories assigned to 
elements in the first set and the word-stem profiles asso 
ciated with the elements of the second set, a distribution 
of elements of the second set over the categories, which 
distribution is not constrained to be the same as a distri 
bution of elements of the first set over the categories, 

wherein a distribution of elements of the second set over 
the word-stem profiles is not constrained to be the same 
as a distribution of elements of the first set over the 
word-stem profiles. 

2. The method of claim 1 wherein a relation between a 
distribution of elements of the second set over the word-stem 
profiles and the distributions of elements of the second set 
over the categories is constrained to be the same as a relation 
between a distribution of elements of the first set over the 
word-stem profiles and the distributions of elements of the 
first set over the categories. 

3. The method of claim 1 wherein the distribution of ele 
ments of the second set over the categories is unbiased. 

4. The method of claim 1 further comprising storing the 
distribution of elements of the second set over the categories 
on a computer storage medium. 

5. The method of claim 1 wherein the elements comprise 
text. 

6. The method of claim 5 wherein the word-stem profiles 
indicate whether certain words occur in the text. 

7. The method of claim 5 wherein the word-stem profiles 
indicate whether certain combinations of words occur in the 
text. 

8. The method of claim 5 wherein the text is unstructured. 



US 9,189,538 B2 
53 

9. The method of claim 1 further comprising analyzing at 
least some of the elements of the first set or the second set to 
obtain the word-stem profiles associated with said elements. 

10. The method of claim 1 wherein step (c) comprises: 
(i) creating, based on the word-stem profiles associated 

with and the categories assigned to elements in the first 
set, a model for assigning a category to an element based 
on the element's word-stem profile, and further calcu 
lating misclassification probabilities associated with the 
model; 

(ii) applying the model to the elements of the second set, 
thereby assigning each element of the second set to one 
of the categories: 

(iii) determining a raw distribution of elements in the sec 
ond set over the categories; and 

(iv) correcting the raw distribution of elements in the sec 
ond set based on the misclassification probabilities, 
thereby calculating a corrected distribution of elements 
in the second set over the categories. 

11. The method of claim 10 wherein step (i) comprises 
dividing the first set into a training set and a test set, creating 
the model based on the word-stem profiles associated with 
and the categories assigned to elements of the training set, 
applying the model to the test set, and calculating misclassi 
fication probabilities based on the categories assigned to the 
element of the test set. 

12. The method of claim 1 wherein the distribution of 
elements of the second set over the categories is calculated 
without assigning the elements of the second set to the cat 
egories individually. 

13. The method of claim 1 wherein step (c) comprises: 
(i) determining, based on a distribution of elements of the 

first set over the word-stem profiles and the distribution 
of elements in the first set over the categories, a relation 
between distributions over the word-stem profiles and 
distributions over the categories: 

(ii) determining a distribution of elements in the second set 
over the word-stem profiles; and 
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(iii) calculating, based on the relation and the distribution 

of elements in the second set over the word-stem pro 
files, a distribution of elements in the second set over the 
categories. 

14. The method of claim 13 wherein the relation is 
expressed as a matrix of conditional probabilities, the distri 
bution of elements in the second set over the word-stem 
profiles is expressed as a vector, and the distribution of ele 
ments in the second set over the categories is calculated by 
multiplying the matrix to the vector. 

15. The method of claim 13 further comprising calculating 
a probability that a particular element of the second set 
belongs to a particular category based on the word-stem pro 
file of said element, the relation, and the distribution of ele 

5 ments in the second set over the categories. 
16. A computer-implemented method, comprising: 
(a) receiving a set of elements: 
(b) assigning each element to one of a plurality of catego 

ries, thereby creating a first distribution of the elements 
over the categories: 

(c) independently of step (b), assigning each element to one 
of the categories, thereby creating a second distribution 
of the elements over the categories: 

(d) using a processor, calculating misclassification prob 
abilities based on the first distribution and the second 
distribution; 

(e) generating pseudo-databased on the misclassification 
probabilities: 

(f) calculating a new distribution over the categories and 
new misclassification probabilities for the pseudo-data; 
and 

(g) obtaining a corrected distribution of elements over the 
categories, 

wherein step (g) comprises repeating steps (e) and (f), 
thereby obtaining a series of distributions over the cat 
egories, and extrapolating the series of distributions 
backwards. 

ck c: ck ci: c 


