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What this Talk is About

Mortality forecasts, which are studied in:

demography & sociology
public health & biostatistics
economics & social security and retirement planning
actuarial science & insurance companies
medical research & pharmaceutical companies
political science & public policy

A better forecasting method

A better farcasting method

Other results we needed to achieve this original goal

Approach: Formalizing qualitative insights in quantitative models
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Other Results (Needed to Develop Improved Forecasts)

Output: same as linear regression

Estimates a set of linear regressions together (over countries, age
groups, years, etc.)

Can include different covariates in each regression

We demonstrate that most hierarchical and spatial Bayesian models
with covariates misrepresent prior information

Better ways of creating Bayesian priors

Produces forecasts and farcasts using considerably more information
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The Statistical Problem of Global Mortality Forecasting

779,799,281 deaths, in annual mortality rates

Multidimensional Data Structures: 24 causes of death, 17 age groups,
2 sexes, 191 countries, all for 50 annual observations.

One time series analysis for each of 155,856 cross-sections:

with 1 minute to analyze each, one run takes 108 days

Every decision must be automated, systematized, and formalized:

the
same goal as including qualitative information in the model

Explanatory variables:

Available in many countries: tobacco consumption, GDP, human
capital, trends, fat consumption, total fertility rates, etc.
Numerous variables specific to a cause, age group, sex, and country

Most time series are very short.

A majority of countries have only a
few isolated annual observations; only 54 countries have at least 20
observations; Africa, AIDS, & Malaria are real problems
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Preview of Results: Out-of-Sample Evaluation

% Improvement

Over Best to Best
Previous Conceivable

Cardiovascular 22 49
Lung Cancer 24 47

Transportation 16 31
Respiratory Chronic 13 30

Other Infectious 12 30
Stomach Cancer 8 24

All-Cause 12 22
Suicide 7 17

Respiratory Infectious 3 7

Each row averages 6,800 forecast errors (17 age groups, 40 countries, and
10 out-of-sample years).
% to best conceivable = % of the way our method takes us from the best
existing to the best conceivable forecast.
The new method out-performs with the same covariates, for most
countries, causes, sexes, and age groups.
Does considerably better with more informative covariates
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All-Cause Mortality Age Profile Patterns
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Existing Method 1: Parameterize the Age Profile
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Gompertz (1825): log-mortality is linear in age after age 20

reduces 17 age-specific mortality rates to 2 parameters (intercept and
slope)
Then forecast only these 2 parameters
Reduces variance, constrains forecasts

Dozens of more general functional forms proposed

But does it fit anything else?
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Mortality Age Profile: The Same Pattern?
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Parameterizing Age Profiles Does Not Work

No mathematical form fits all or even most age profiles

Out-of-sample age profiles often unrealistic

The key empirical patterns are qualitative:

Adjacent age groups have similar mortality rates
Age profiles are more variable for younger ages
We don’t know much about levels or exact shapes

Key question: how to include this qualitative information

Also: Method ignores covariate information; the leading current
method (McNown-Rogers) not replicable
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Deterministic Projections
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Existing Method 2: Deterministic Projections
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Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates

; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates

; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates

; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates

; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates; forecasts fan out

;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



Existing Method 2: Deterministic Projections

1960 1980 2000 2020 2040 2060

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Time

D
at

a 
an

d 
Fo

re
ca

st
s

0

5

10

15
2025
3035 4045
50

55

60

65

70

75

80

0 20 40 60 80

−1
0

−8
−6

−4
−2

All Causes  (m) USA

Age

D
at

a 
an

d 
Fo

re
ca

st
s

1950 2060

Random walk with drift; Lee-Carter; least squares on linear trend

Pros: simple, fast, works well in appropriate data

Cons: omits covariates; forecasts fan out;
age profile becomes less smooth

Does it fit elsewhere?

() Demographic Forecasting 14 / 99



The same pattern?
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The same pattern?
Random Walk with Drift ≈ Lee-Carter ≈ Least Squares
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Deterministic Projections Do Not Work

Linearity does not fit most time series data

Out-of-sample age profiles become unrealistic over time
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Regression Approaches (Murray and Lopez, 1996)

Model mortality over countries (c) and ages (a) as:

mcat = Zca,t−`βca + εcat , t = 1, . . . ,T

Zca,t−` ∈ Rdca : covariates (GDP, tobacco . . . ) lagged ` years.

βca ∈ Rdca : coefficients to be estimated

Cannot estimate equation by equation (variance is too large);

Pool over countries: βca ⇒ βa

Properties:

Small variance (due to large n)
large biases (due to restrictive pooling over countries),
considerable information lost (due to no pooling over ages)
same covariates required in all cross-sections
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Partial Pooling via a Bayesian Hierarchical Approach

Likelihood for equation-by-equation least squares:

P(m | βi , σi ) =
∏
t

N
(
mit | Zitβi , σ

2
i

)

Add priors and form a posterior

P(β, σ, θ | m) ∝ P(m | β, σ)× P(β | θ)× P(θ)P(σ)

= (Likelihood)× (Key Prior)× (Other priors)

Calculate point estimate for β (for ŷ) as the mean posterior:

βBayes ≡
∫

βP(β, σ, θ | m) dβdθdσ

The hard part: specifying the prior for β and, as always, Z

The easy part: easy-to-use software to implement everything we
discuss today.
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The (Problematic) Classical Bayesian Approach

Assumption: similarities among cross-sections imply similarities among
coefficients (β’s).

Requirements:

sij measures the similarity between cross-section i and j .
(βi − βj)

′Φ(βi − βj) ≡ ‖βi − βj‖2Φ measures the
distance between βi and βj .

Natural choice for the prior:

P(β | Φ) ∝ exp

− 1

2

∑
ij

sij‖βi − βj‖2Φ
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The (Problematic) Classical Bayesian Approach

Requires the same covariates, with the same meaning, in every
cross-section.

Prior knowledge about β exists for causal effects, not for control
variables, or forecasting

Everything depends on Φ, the normalization factor:

Φ can’t be estimated, and must be set.
An uninformative prior for it would make Bayes irrelevant,
An informative prior can’t be used since we don’t have information
Common practice: make some wild guesses.

The classical approach can be harmful: Making βi more smooth may
make µ less smooth (µ = Zβ):

µit − µjt = Zit(βi − βj) + (Zit − Zjt)βj

= Coefficient variation + Covariate variation

Extensive trial-and-error runs, yielded no useful parameter values.
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Our Alternative Strategy: Priors on µ

Three steps:

1 Specify a prior for µ:

P(µ | θ) ∝ exp

(
−1

2
H[µ, θ]

)
, e.g., H[µ, θ] ≡ θ

T

T∑
t=1

A−1∑
a=1

(µat − µa+1,t)
2

To do Bayes, we need a prior on β
Problem: How to translate a prior on µ into a prior on β
(a few-to-many transformation)?

2 Constrain the prior on µ to the subspace spanned by the covariates:
µ = Zβ

3 In the subspace, we can invert µ = Zβ as β = (Z′Z)−1Z′µ, giving:

P(β | θ) ∝ exp

(
−1

2
H[µ, θ]

)
= exp

(
−1

2
H[Zβ, θ]

)
the same prior on µ, expressed as a function of β (with constant
Jacobian).
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Say that again?

In other words

Any prior information about µ (the expected value of the dependent
variable) is “translated” into information about the coefficients β via

µcat = Zcatβca

A Simple Analogy

Suppose δ = β1 − β2 and P(δ) = N(δ|0, σ2)

What is P(β1, β2)?

Its a singular bivariate Normal

Its defined over β1, β2 and constant in all directions but (β1 − β2).

We start with one-dimensional P(µcat), and treat it as the
multidimensional P(βca), constant in all directions but Zcatβca.
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We start with one-dimensional P(µcat), and treat it as the
multidimensional P(βca), constant in all directions but Zcatβca.
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Advantages of the resulting prior over β, created from
prior over µ

Fully Bayesian: The same theory of inference applies

Can use standard Bayesian machinery for estimation.

µi and µj can always be compared, even with different covariates.

The normalization matrix Φ is unnecessary (task is performed by Z,
which is known)

Priors are based on knowledge rather than guesses.
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Basic Prior: Smoothness over Age Groups

Prior knowledge: log-mortality age profile are smooth variations of a
“typical” age profile µ̄(a):

H[µ, θ] ≡

θ

AT

∫ T

0
dt

∫ A

0
da

(
dn

dan
[µ(a, t)− µ̄(a)]

)
2

Discretize age and time:

P(µ | θ) ∝ exp

(
− 1

2
θ
∑
aa′t

(µat − µ̄a)
′W n

aa′(µa′t − µ̄a′)

)

where W n is a matrix uniquely determined by n and θ
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From a prior on µ to a prior on β

Add the specification µat = µ̄a + Zatβa:

P(β | θ) = exp

(
− θ

T

∑
aa′t

W n
aa′(Zatβa)(Za′tβa′)

)

= exp

(
−θ
∑
aa′

W n
aa′β′

aCaa′βa′

)

where we have defined:

Caa′ ≡ 1

T
Z′

aZa′ Za is a T × da data matrix for age group a
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The Prior on the Coefficients β

P(β | θ) ∝ exp

(
−θ
∑
aa′

W n
aa′β′

aCaa′βa′

)

The prior is normal (and improper);

The prior is uniquely determined by the choice of n, through the
“interaction” matrix W n.

Different age groups can have different covariates: the matrices Caa′

are rectangular (da × da′).

The variance of the prior is inversely proportional to θ, which controls
the “strength” of the prior.
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Samples From Age Prior
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Prior Indifference

These priors are “indifferent” to transformations:

µ(a, t) µ(a, t) + p(a, t)

where p(a, t) is a polynomial in a (whose degree is the degree of the
derivative in the prior)

Prior information is about relative (not absolute) levels of
log-mortality
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Formalizing (Prior) Indifference
equal color = equal probability
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Smoothness Parameter

The prior:

P(β | θ) ∝ exp

(
−θ
∑
aa′

W n
aa′β′

aCaa′βa′

)

We figured out what n is

but what is the smoothness parameter, θ?

θ controls the prior standard deviation
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Generalizations

The above tools: smooth over a (possibly discretized) continuous
variable — age or age groups.

We can also smooth over time (also a discretized continuous variable).

Can smooth when cross-sectional unit i is a label, such as country.

Can smooth simultaneously over different types of variables (age,
country, and time).

We can smooth interactions:

Smoothing trends over age groups.
Smoothing trends over age groups as they vary across countries, etc.

The mathematical form for all these (separately or together) turns out
to be the same:

P(β | θ) ∝ exp

−θ

2

∑
ij

Wijβ
′
iCijβj

 , Caa′ ≡ 1

T
ZaZa′
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Mortality from Respiratory Infections, Males
Least Squares
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Mortality from Respiratory Infections, males, σ = 2.00
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.51
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.15
Smoothing over Age Groups

0 20 40 60 80

−1
2

−1
0

−8
−6

−4

 (m) Belize

Age

D
at

a 
an

d 
F

or
ec

as
ts

1970 2030

() Demographic Forecasting 53 / 99



Mortality from Respiratory Infections, males, σ = 0.87
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.66
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.50
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.38
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.28
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.21
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.16
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.12
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.09
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.07
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.05
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.04
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.03
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.02
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.01
Smoothing over Age Groups
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Mortality from Respiratory Infections, males
Least Squares
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Mortality from Respiratory Infections, males, σ = 2.00
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.51
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 1.15
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.87
Smoothing over Age Groups

1970 1980 1990 2000 2010 2020 2030

−1
2

−1
0

−8
−6

−4

 (m) Belize

Time

D
at

a 
an

d 
F

or
ec

as
ts

0

5

10

15

20
25

30 3540 45
50

55

60

65

70

75

80

() Demographic Forecasting 73 / 99



Mortality from Respiratory Infections, males, σ = 0.66
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.50
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.38
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.28
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.21
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.16
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.12
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.09
Smoothing over Age Groups

1970 1980 1990 2000 2010 2020 2030

−1
2

−1
0

−8
−6

−4

 (m) Belize

Time

D
at

a 
an

d 
F

or
ec

as
ts

0

510

15
20

25

30

35

40

45

50

55

60

65

70

75

80

() Demographic Forecasting 81 / 99



Mortality from Respiratory Infections, males, σ = 0.07
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.05
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.04
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.03
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.02
Smoothing over Age Groups
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Mortality from Respiratory Infections, males, σ = 0.01
Smoothing over Age Groups
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Smoothing Trends over Age Groups

Least Squares
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections
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Smoothing Trends over Age Groups
Log-mortality in Belize males from respiratory infections
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Smoothing Trends over Age Groups and Time

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Smoothing Trends over Age Groups and Time
Log-Mortality in Bulgarian males from respiratory infections

Least Squares
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Using Covariates (GDP, tobacco, trend, log trend)

Least Squares
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males

Least Squares
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Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Korean Males
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Using Covariates (GDP, tobacco, trend, log trend)

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



Using Covariates (GDP, tobacco, trend, log trend)
Lung cancer in Males, Singapore

Least Squares

1970 1990 2010 2030

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

4550

55

60

65

70
7580

30 40 50 60 70 80

−2
0

−1
5

−1
0

−5
0

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

Smooth over age,
time, age/time

1970 1990 2010 2030

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Time

D
at

a 
an

d 
F

or
ec

as
ts

30

35

40

45

50

55

60

65

70

75
80

30 40 50 60 70 80

−1
4

−1
2

−1
0

−8
−6

 (m) Singapore

Age

D
at

a 
an

d 
F

or
ec

as
ts

1963 2030

() Demographic Forecasting 91 / 99



What about ICD Changes?
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Fixing ICD Changes
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A book manuscript, YourCast software, etc.

http://GKing.Harvard.edu
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Without Country Smoothing
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With Country Smoothing
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Formalizing Similarity

Standard Bayesian Approach

Assume coefficients are similar

— But we know little about the coefficients

Requires the same covariates in each cross-section

— Why measure water quality in the U.S.?

Requires covariates with the same meaning in each cross-section

— Does GDP mean the same thing in Botswana and the U.S.?

Imposes no assumptions on covariates or mortality

— If covariates are dissimilar, then making coefficients similar makes
mortality dissimilar [since E (yt) = Xtβ in each cross-section]

Alternative Approach

Assume expected mortality is similar
Coefficients are unobserved, mortality patterns are well known
Different covariates allowed in each cross-section
Covariates with the same name can have different meanings
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Many Short Time Series
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Preview of Results: Out-of-Sample Evaluation

Mean Absolute Error % Improvement

Best Our Best Over Best to Best
Previous Method Conceivable Previous Conceivable

Cardiovascular 0.34 0.27 0.19 22 49
Lung Cancer 0.36 0.27 0.17 24 47

Transportation 0.37 0.31 0.18 16 31
Respiratory Chronic 0.45 0.39 0.26 13 30

Other Infectious 0.55 0.48 0.32 12 30
Stomach Cancer 0.30 0.27 0.20 8 24

All-Cause 0.17 0.15 0.08 12 22
Suicide 0.31 0.29 0.18 7 17

Respiratory Infectious 0.49 0.47 0.28 3 7

Each row averages 6,800 forecast errors (17 age groups, 40 countries, and
10 out-of-sample years).
% to best conceivable = % of the way our method takes us from the best
existing to the best conceivable forecast.
The new method out-performs with the same covariates, for most
countries, causes, sexes, and age groups.
Does much better with better covariates
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Preview of Results: Out-of-Sample Evaluation
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