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Appendix A Proofs of Analytical Results

We now give proofs of propositions from Section ??.

Proof of Proposition 1

Start with the least-squares minimization problem

π̂U
1 = arg min

πU
1

W∑
w=1

(
SU
w − ŜU

w

)2
.

Write ŜU
w in terms of XL and πU

1

π̂U
1 = arg min

πU
1

W∑
w=1

(
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w −XL

w2 −
(
XL
w1 −XL

w2

)
πU
1

)2
.

Take the derivative and set equal to 0

0 =
∂

∂πU
1
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w1 −XL

w2

)
πU
1

)2
=
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w=1
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w −XL

w2

) (
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)
−
(
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w2

)2
πU
1
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w=1

(
SU
w −XL

w2

) (
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w2

)
=
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w=1

(
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w2

)2
πU
1∑W

w=1 (SU
w −XL

w2) (XL
w1 −XL

w2)∑W
w=1 (XL

w1 −XL
w2)

2 = πU
1 .

Since the expression being optimized is quadratic, this is a global optimum. Therefore the

readme estimator in two categories has the closed-form expression:

π̂U
1 =

∑W
w=1 (XL

w1 −XL
w2) (SU

w −XL
w2)∑W

w=1 (XL
w1 −XL

w2)
2 .

Proof of Proposition 2

Start with the expression for π̂U
1 :

π̂U
1 =

∑W
w=1 (XL

w1 −XL
w2) (SU

w −XL
w2)∑W

w=1 (XL
w1 −XL

w2)
2 .
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Write XL
wc in terms of XU

wc and εwc.

π̂U
1 =

∑W
w=1 (XU

w1 −XU
w2 + εw1 − εw2) (SU

w −XU
w2 − εw2)∑W

w=1 (XU
w1 −XU

w2 + εw1 − εw2)2
.

Substitute the accounting identity for SU
w
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w2)π
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Expand the numerator
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and take expectation
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Using the first-order Taylor approximation E
[
X
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, we have
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,

where the last two lines follow from the definition of variance and the assumption that
E[εwc] = 0. Subtracting πU

1 to get the bias:

Bias(π̂U
1 ) ≈
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=

∑W
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Proof of Proposition 3
Substituting in the known measurement error variances and assuming independence in
measurement errors across categories yields:

Bias(π̂U
1 ) ≈
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2
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(
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The denominator is strictly positive. Therefore, bias is minimized when the numerator
is equal to 0. Solving for πU
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πU
1

W∑
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1 )
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2
w2

= πL
1

When the measurement error variances are generally constant across categories, the
bias is zero when the labeled set proportions are equal to the unlabeled set proportions.

Appendix B Simulation Results

We illustrate our analytical results with simulation to build intuition for Section ??. We

have found that simulations with large values of C and W generate more complexity

without much additional insight, and so we set C = 2 and W = 2. We then evaluate

readme performance while varying the degree of semantic change, textual discrimination,

and proportion divergence. Our improvements to readme exploit the relationship between

these three quantities.

For the purpose of our simulations, define category distinctiveness, or columns of X ,

as (b1 + b2)/2, where the absolute differences between categories is bw = |Xwc − Xwc′|

for row w = 1, 2. Then, we define feature distinctiveness as |b1 − b2|/2, which is is the

distinctiveness between rows of X . For our error metric, we use the sum of the absolute

errors over categories (SAE), averaged over simulations.1

We draw our simulations as follows. First, we control proportion divergence by draw-

ing πL and πU from i.i.d. Dirichlet distributions with concentration parameters set to 1.

(In our figures, we measure average proportion divergence as (|πL
1 − πU

1 |+ |πL
2 − πU

2 |)/2.)

We sample XU
wc from an i.i.d. Normal with mean 0 and variance 1/9. Then, we generate

XL
wc = XU

wc+ ε, where ε = 0 or, to simulate semantic change, from a Normal with a mean

at 0 and standard deviation proportional to |XU
wc|. We then treat these parameters as fixed

1We use the SAE to make our analysis consistent across data sets with different numbers of categories.
We have found that simple attempts to normalize, such as dividing by the number of categories, tends to
weaken this comparability, especially because in all cases the target quantity is located on the simplex.
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and, to simulate measurement error in the calculation of XL, generate 5,000 repeated

sample data sets from each set of parameters, apply the readme estimator, and estimate

the mean over simulations of SAE. To generate each of the 5,000 sampled data sets, we

randomly generate document-level features from Normal densities by adding a draw from

a standard Normal to each cell value of XL
wc and XU

wc.

Figure 1 illustrates how the SAE behaves as a function of category distinctiveness

(vertically) and proportion divergence (horizontally). SAE is coded in colors from low

(blue) to high (yellow). The bottom right of the figure is where readme performance is

best: where proportion divergence is low and category distinctiveness is high. When the

language is clearly distinguishable among categories, readme can overcome even large

divergences between the labeled and unlabeled sets. Without high levels of textual dis-

crimination, readme then becomes vulnerable to high levels of proportion divergence.

Category distinctiveness and proportion divergence appear to have roughly the same rela-

tive importance, as the contour lines in Figure 1 are not far from 45◦ angles.

Figure 2 studies textual discrimination further by illustrating how category distinctive-

ness (horizontally) and feature distinctiveness (vertically) jointly impact SAE. If we hold

feature distinctiveness fixed, increased category distinctiveness improves performance; if

we hold category distinctiveness fixed, greater feature distinctiveness similarly leads to

better performance over most of the range. Of the two, feature distinctiveness is some-

what more predictive of performance, especially for low category distinctiveness.

Finally, Figure 3 illustrates how the relationship between feature distinctiveness (three

separate lines in each panel) and proportion divergence (horizontal axis) is mediated

by the presence of semantic change (difference between the panels). Without semantic

change (left panel), highly distinctive features greatly reduce SAE (which can be seen by

the wide separation among the lines on the graph). In contrast, in the presence of semantic

change (in this case we moved the mean of E(XL) by a quarter of a standard deviation

from XU), more distinctive features still tend to outperform less distinctive features, but

the difference is less pronounced. With semantic change, distinctive features in the la-
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Figure 1: Category distinctiveness is plotted (horizontally) by proportion divergence be-
tween the labeled and unlabeled sets is plotted (vertically), with mean absolute sum of
errors color coded (with yellow in the lower right corner best).

beled set may no longer be distinctive in the unlabeled set or may in fact be misleading

about documents’ category membership.

Appendix C Objective Function Illustration

For our application, it is crucial that our objective function incorporates both category and

feature distinctiveness. Optimizing Γ for category distinctiveness alone would lead to high

variance through high collinearity in
¯
X , and optimizing Γ for feature distinctiveness alone

would lead to higher bias and low category distinctiveness. Optimizing both together, as

we do, reduces the overall error rate. We illustrate this point with the 1,426 emails drawn

from the Enron corpora.

For expository clarity, we set W ′ = 2 and choose Γ by first maximizing the cat-
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Figure 2: Category distinctiveness is plotted (horizontally) and feature distinctiveness
(vertically), with mean absolute sum of errors color coded (with yellow indicating best
performance).

egory distinctiveness metric alone. We offer a scatterplot of the resulting projections,

¯
F , in the left panel of Figure 4, with different colors and symbols to represent the five

categories. This panel reveals that these features do indeed discriminate between the cate-

gories (which can be seen by separation between the different colored symbols). However,

as is also apparent, the two dimensions are highly correlated which, as in linear regression,

would lead to higher variance estimates. In linear regression, given a fixed sample size,

collinearity is an immutable fact of the fixed data set and specification; in contrast, in our

application operating in the space of the features that we construct rather than the data we

are given, we can change the projections, the space in which the regression is operating,

and therefore the level of collinearity. As a second illustration, we again set W ′ = 2 but

now optimize Γ by maximizing only feature distinctiveness. In this case, as can be seen in

the middle panel of Figure 4, the columns of
¯
XL are uncorrelated but unfortunately do not
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Figure 3: Proportion divergence is plotted (horizontally) by the mean of the sum of the
absolute error (vertically) for different levels of category distinctiveness (separate lines)
and for the absence (left panel) and presence (right panel) of semantic change.

discriminate between categories well (as can be seen by the points with different colors

and symbols overlapping).
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Figure 4: Optimizing Γ by category distinctiveness only (left panel), feature distinctivenss
only (middle), and both (right panel). Each point is a document, with categories coded
with a unique color and symbol. The axes (or components) are columns of tbe constructed
φ(F × Γ).

Thus, we implement our metric, optimizing the sum of both category and feature dis-

tinctiveness, which we present in the right panel of Figure 4. This result is well calibrated
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for estimating category proportions: The dimensions are discriminatory and thus bias re-

ducing, which can be seen by the color separation, but still uncorrelated, and thus variance

reducing. After matching on these features and performing the least squares regression in

these Enron data, we find the sum of the absolute errors (SAE) in estimating πU of 0.28,

compared to 0.50 for the original readme, a substantial improvement.

Empirically, also, we find that matching indeed has the desired effects: in the 73

real-world data sets we introduce in Section ??, matching alone reduces the divergence

between
¯
XL and the true, unobserved

¯
XU in 99.6% of cases and on average by 19.8%.

Proportion divergence, which is not observed in real applications but which we can mea-

sure because we have coded unlabeled sets for evaluation, is reduced in 83.2% of data

sets, on average by 25%. We now turn to the details of these data, and the consequence of

using all parts of our new methods, for mean square error in the quantities of interest.

Appendix D Applications to and Insights from Causal In-

ference

We discuss two areas where developments in this paper might profitably be applied to an

area outside of automated text analysis.

First, our paper follows an implicit principle in defining Γ that is also implicit in sev-

eral strains of the causal inference literature. We call this the “Tied Hands Principle”

(THP), as it involves “tying ones hands” by ignoring certain types of certain information

to avoid the possibility of biasing results in favor of one’s favorite hypotheses, without

regard to evidence in the data. In causal inference, the literature recommends matching

treated and control observations without using the outcome variable (or at least not in both

treatment regimes). Violating THP would enable the researcher to produce any estimate

they wish, regardless of the evidence. For another example, in prospective designs, stan-

dard advice is to allow researchers to select observations conditional on the explanatory

variables, but not the outcome variable. Similarly, in retrospective (case-control) designs,
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researchers are advised to select observations based on the outcome variable but not on

the explanatory variables. Violating these rules would also enable estimates without con-

straints from the data.

In our case, if we were to generate XL in the labeled set by taking into account in-

formation about the resulting SU in the unlabeled set, we could generate essentially any

estimated unlabeled set category proportion π̂U because we would be choosing both the

left and right side of the readme regression. We therefore “tie our hands” by only includ-

ing information from the labeled set in our optimization routine for Γ, which is reflected in

the choice of objective function. Thus, the special case of the THP for readme2 prohibits

finding Γ∗ by minimizing f(Γ, L, U).

We formalize a general version of THP, designed to apply to all these examples and

others:

Tied Hands Principle (THP). Let t denote a function that transforms data objects A and

B, into A∗ = t(A,Z) and B∗ = t(B,Z), by matching or weighting data subsets (rows),

or transforming or selecting features (columns), where Z denotes exogenous information

such that p(A,B|Z) = p(A,B). Denote as TA,Z the set of all functions of A and Z (but

not B) and TB,Z the set of all functions of B and Z (but not A). Then define g(j|k) as

a function to choose an element from set j using information in k. Consider statistical

procedures that are functions of both A∗ and B∗. Then, for D = A or D = B, THP

requires that the transformation function t be chosen such that t = g(TD,Z |D,Z) but not

t = g(TD,Z |A,B,Z).

A second connection with the causal inference literature is our dimensionality reduc-

tion technique, which may have applications to matching studies, from which we origi-

nally borrowed inspiration for some of our ideas. An important issue in matching is the

optimal feature space, such as in the space of predicted values for the outcome under the

control intervention (to follow THP, as in “predictive mean matching”). One such feature

space is the one derived here which might enable researchers to control dimensionality,
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as well as the tradeoff between feature independence and informativeness. The result-

ing causal estimator could thus have attractive properties, since it would take into account

both the relationship between the covariates and the outcome (leading to lower bias) while

incorporating several independent sources of information (leading to lower variance).

To be more precise, consider the Average Treatment Effect on the Treated:

τ = E[Yi(1)|Xi, Ti = 1]− E[Yi(0)|Xi, Ti = 1].

We could estimate E[Yi(0)|Xi, Ti = 1] directly using a regression model trained on the

control units, predicting their outcomes. However, to avoid model dependence we could

instead use non-parametric methods, matching each treated unit with the nearest (say) 3

control units and taking the average outcome value of those control units as an estimate

of E[Yi(0)|Xi, Ti = 1]. However, some variables on which we match may be unimpor-

tant, in that they are poorly predictive of the outcome. When outcomes are discrete, we

can consider applying the technique developed above to generate feature projections for

readme to instead create features for matching that are highly predictive of the outcome.

We could do this by fitting a feature projection on units in the control group (to avoid

violating the THP) that optimizes the degree of feature discrimination in Yi. We can then

apply this projection to all units and match on the new feature space.

In this arrangement, the background covariates function like the word vector sum-

maries in our text analysis, and Yi(0) plays a role that category membership did before.

Matching on features that generate a high-quality E[Xi|Yi(0)] matrix may seem strange.

Yet, the exercise here is in many ways the natural one: either we make no assumptions

about the covariate-outcome relationship (as in fully non-parametric matching), we con-

dition on the background covariates and use this information to predict the outcome (as

in the case of regression-adjusted inference), or we condition on the outcome data and

re-weight the background covariates in a way that maximizes the distinctiveness of the

resulting features (as in our proposed approach).
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As a proof of concept, we conduct simulations beginning with only the control units

from each of 9 prominent social science experiments (Bailey, Hopkins, and Rogers, 2016;

Bolsen, Ferraro, and Miranda, 2013; Callen, De Mel, McIntosh, and Woodruff, 2014;

Enos and Fowler, 2016; Finkelstein et al., 2012; Gerber and Green, 2000; Kugler, Ku-

gler, Saavedra, and Prada, 2015; McClendon and Riedl, 2015; Taylor, Stein, Woods, and

Mumford, 2011). In each replication data set, we assign half of the control units to receive

a “treatment” of a size equal to a constant plus 0.1 times the standard deviation of the out-

come (which we take to be the original dependent variable in the study). We assign this

synthetic treatment probabilistically in a way that seeks to replicate the amount of con-

founding present in the original experiment. In particular, after fitting a non-parametric

binary classifier to the original treatment/control status, we selected units into the syn-

thetic treatment group with probabilities proportional to the resulting propensity scores.

We then compare the error of 5 different methods for extracting the causal effect be-

tween the synthetic treatment and control groups. These methods are each based on near-

est neighbor matching and differ only in the feature space in which the matching takes

place. We consider matching on estimated propensity scores, on random projections, and

on the predicted values from a regression modeling the relationship between the data in-

puts and the outcome trained on the control data. We also considered matching on the

original features, on random projections, and on the features generated from the readme2

algorithm. We repeated the synthetic experiment 100 times for each of the 9 replication

data sets.

The results, which appear in Figure 5, suggest that the readme2 features perform well

for the non-parametric estimation of causal effects. In 7 of the 9 data sets, estimation

in the readme2 space yields the largest decrease in absolute error. In the other 2 cases,

performance is still very good. It appears that the features from the readme2 algorithm

can be profitably used in other contexts where non-parametric analyses will be done and

where outcome data is available.

Finally, our dimensionality reduction technology may also be used for data visualiza-
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Figure 5: The change in absolute error in this graph is calculated relative to the error
from the simple difference in means estimator. Points below “100” are those for which
the average error of the matching estimator was lower than the naive difference in means
estimator. Points above “100” are those for which the error was higher.

tion. For example, in visualizing data on partisanship, we could find the 2-dimensional

projection that maximally discriminates between Democrats, Republicans, and Indepen-

dents and simultaneously contains minimal redundancy. The relevant clusters would then

become more visible, and could even be paired with a data clustering algorithm on the

2-dimensional projection for additional visualization or analysis purposes.
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