Extracting Systematic Social Science Meaning from Text (\& Cause-Specific Mortality Rates from Symptom Data)

Gary King
Harvard University

March 20, 2007

References

- Daniel Hopkins and Gary King. "Extracting Systematic Social Science Meaning from Text"
- Gary King and Ying Lu. "Verbal Autopsy Methods with Multiple Causes of Death," tentatively to appear, Statistical Science
- Copies at http://gking.harvard.edu

Content Analysis: Past and Future

- Dates to the 1600 s: The Church tracked nonreligious texts by classifying newspaper stories
- Prominent early social scientists used it: Berelson, de Grazia, etc.
- Spread to vast array of fields
- Automated methods now joining hand coding
- Use increased six-fold 1980-2000
- Huge potential for new applications: explosive increase in web pages, blogs, emails, digitized books and articles, audio recordings (automatically converted to text), and government reports, legislative hearings and records, electronic medical records, etc.
- Infeasible to expand hand coding efforts much further
- Automated methods are essential

Inputs and Target Quantities of Interest

- Available inputs:
- Large set of text documents
- A set of mutually exclusive and exhaustive categories
- A small subset of documents hand-coded into the categories
- Quantities of interest
- Computer Science: individual document classification
- Social Science: proportion of documents in each category
- Can get the 2nd by aggregating the 1st (turns out not to be necessary!)
- E.g., classify constituents' letters to a member of congress by policy area, or estimate proportion of letters in each policy area
- E.g., classify emails as spam or not, or estimate proportion of email that is spam
- Maximizing one goal won't get you the other: high classification accuracy can coexist with huge biases in category proportions

Our Approach

- Gives unbiased estimates of population proportions
- Works better than aggregating the best classification method
- No problem if classification accuracy is low
- (And individual classification is not necessary)
- No parametric modeling assumptions
- The hand coded subset need not be a random sample
- Scales to large numbers of documents
- Separately: propose correction for imperfect inter-coder reliability (i.e., should work better than hand coding everything if that were feasible)

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs
- Explosive growth: ≈ 0 in 2000 to $39-100$ million worldwide now.
- A democratic technology: 6 million in China and 700,000 in Iran(!)
- "We are living through the largest expansion of expressive capability in the history of the human race"

One specific quantity of interest

- Subject: the grand conversation about the American presidency
- Question: opinions about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:
- Part ordinal, part nominal categorization
- "Sentiment categorization is more difficult than topic classification"
- Language ranges from "my crunchy gf thinks dubya hid the wmd's!" to the Queen's English
- Little common internal structure (no inverted pyramid)

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush ("Bush", "George W.", "Dubya", "King George", etc.), Hillary Clinton ("Senator Clinton", "Hillary", "Hitlery", "Mrs. Clinton"), etc.
- Preprocess: convert to lower case, remove punctuation, perform stemming (reduce "consist", "consisted", "consistency", "consistent", "consistently", "consisting", and "consists", to their stem: "consist")
- Code variables as presence or absence of unique unigrams, bigrams, trigrams, etc.
- Example:
- Our 10,771 blog posts about Bush and Clinton: 201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.
- Unigrams in $>1 \%$ or $<99 \%$ of documents: 3,672 variables
- Groups infinite possible posts into "only" $2^{3,672}$ distinct types

Notation

- Document Category

$$
D_{i}= \begin{cases}-2 & \text { extremely negative } \\ -1 & \text { negative } \\ 0 & \text { neutral } \\ 1 & \text { positive } \\ 2 & \text { extremely positive } \\ \text { NA } & \text { no opinion expressed } \\ \text { NB } & \text { not a blog }\end{cases}
$$

- Word Stem Profile:

$$
\mathbf{S}_{i}= \begin{cases}S_{i 1}=1 & \text { if "awful" is used, } 0 \text { if not } \\ S_{i 2}=1 & \text { if "good" is used, } 0 \text { if not } \\ \vdots & \vdots \\ S_{i K}=1 & \text { if "except" is used, } 0 \text { if not }\end{cases}
$$

Quantities of Interest

- Computer Science: individual document classifications

$$
D_{1}, D_{2} \ldots, D_{L}
$$

- Social Science: proportions in each category

$$
P(D)=\left(\begin{array}{c}
P(D=-2) \\
P(D=-1) \\
P(D=0) \\
P(D=1) \\
P(D=2) \\
P(D=\mathrm{NA}) \\
P(D=\mathrm{NB})
\end{array}\right)
$$

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Classification of population documents not necessary
- Biased if hand-coded documents are not random sample of population
- nonrandomness common due to population drift, studying data subdivisions, etc.
(2) Aggregation of model-based individual classifications
- Biased if not random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$
- Bias unless
- $P(D \mid \mathbf{S})$ encompasses the "true" model.
- \mathbf{S} spans the space of all predictors of D (i.e., all information in the document)
- Even optimal classification with high \% correctly classified can produce biased estimates of proportions

Using Misclassification Rates to Correct Proportions

- Divide labeled set into training and test sets
- Use training set to classify test set (ignoring D) and determine misclassification rates (using D)
- Use entire labeled set to classify all unlabeled documents and aggregate to category proportions
- Use misclassification rates to correct:
- Suppose we find that 12% of test set documents in category 2 should really have been in category 1
- Correct proportions for the unlabeled set: subtract 12% from category 2 and add 12% to category 1
- Assumes only that misclassification rates were estimated well
- Estimates of category proportions: vastly improved

Formalization from Epidemiology (Levy and Kass, 1970)

- An accounting identity:

$$
P(\hat{D}=1)=(\text { sens }) P(D=1)+(1-\text { spec }) P(D=2)
$$

- Solve:

$$
P(D=1)=\frac{P(\hat{D}=1)-(1-\text { spec })}{\text { sens }-(1-\text { spec })}
$$

- Use this equation to correct $P(\hat{D})$

Generalize to J categories (King and Lu, 2007)

- Accounting identity for J categories

$$
P(\hat{D}=j)=\sum_{j^{\prime}=1}^{J} P\left(\hat{D}=j \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

- Drop the intermediate \hat{D} calculation, since $\hat{D}=f(\mathbf{S})$:

$$
P(\mathbf{S}=s)=\sum_{j=1}^{J} P(\mathbf{S}=s \mid D=j) P(D=j)
$$

- Simplify to an equivalent matrix expression:

$$
P(\mathbf{S})=P(\mathbf{S} \mid D) P(D)
$$

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P(\mathbf{S} \mid D) \\
& 2^{K} \times 1 \\
& 2^{K} \times J \\
& \Longrightarrow Y=X \beta \quad \Longrightarrow \quad \beta=1 \\
& \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

Document category proportions (quantity of interest) Word stem profile proportions (estimate in unlabeled set by tabulation) Word stem profiles, by category (estimate in labeled set by tabulation) Alternative symbols (to emphasize the linear equation) Solve for quantity of interest (with no error term)

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1
- Solutions

A Simulation with a Nonrandom Hand-coded Sample

A Simulation: Accurate Estimates

Out of Sample Validation: Blogs

Out of Sample Validation: Other Examples

Movie Reviews

University Websites

Bias by Number of Hand Coded Documents

Nonparametric Estimator

Sampling Estimator

Average RMSE by Number of Hand Coded Documents

Misclassification Matrix for Blog Posts

	-2	-1	0	1	2	NA	NB	$P\left(D_{1}\right)$
-2	.70	.10	.01	.01	.00	.02	.16	.28
-1	.33	.25	.04	.02	.01	.01	.35	.08
0	.13	.17	.13	.11	.05	.02	.40	.02
1	.07	.06	.08	.20	.25	.01	.34	.03
2	.03	.03	.03	.22	.43	.01	.25	.03
NA	.04	.01	.00	.00	.00	.81	.14	.12
NB	.10	.07	.02	.02	.02	.04	.75	.45

SIMEX Analysis of Not a Blog Category

Category NB

SIMEX Analysis of Not a Blog Category

Category NB

SIMEX Analysis of Not a Blog Category

Category NB

SIMEX Analysis of Other Categories

Category -2

Category - 1

Category 0

Category 1

Category 2

Category NA

What can go wrong?

- We assume $P^{h}(\mathbf{S} \mid D)=P(\mathbf{S} \mid D)$
- Must choose word stem subset size (a smoothing parameter)
- Need enough labeled documents in each category (can hand code more if Cl's are too large, perhaps via case-control methods)
- Need sufficient information in: documents, categorization scheme, numerical summaries of the documents, and hand-codings
- Use additional hand coding to verify assumptions

Verbal Autopsy Methods

- The problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only 23/192 countries
- 75 have no death registration at all
- The Approach
- Ask relatives or caregivers 50-100 symptom questions
- Ask physicians to determine cause of death (low intercoder reliability)
- Apply expert algorithms (high reliability, low validity)
- Find deaths with medically certified causes from a local hospital, trace caregivers to their homes, ask the same symptom questions, and statistically classify deaths in population (model-dependent)

An Alternative Approach

- Document Category, Cause of Death,

$$
D_{i}= \begin{cases}1 & \text { if bladder cancer } \\ 2 & \text { if cardiovascular disease } \\ 3 & \text { if transportation accident } \\ \vdots & \vdots \\ J & \text { if infectious respiratory }\end{cases}
$$

- Word Stem Profile, Symptoms:

$$
\mathrm{S}_{i}= \begin{cases}S_{i 1}=1 & \text { if "breathing difficulties", } 0 \text { if not } \\ S_{i 2}=1 & \text { if "stomach ache", } 0 \text { if not } \\ \vdots & \vdots \\ S_{i K}=1 & \text { if "diarrhea", } 0 \text { if not }\end{cases}
$$

Validation in China

Validation in Tanzania

For more information

http://GKing.Harvard.edu

