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Inputs and Target Quantities of Interest

@ Input Data:

o Large set of text documents
o A set of (mutually exclusive and exhaustive) categories
o A small set of documents hand-coded into the categories

@ Quantities of interest

e individual document classifications (spam filters)
e proportion in each category (proportion email which is spam)

@ Estimation

o Can get the 2nd by counting the 1st (turns out not to be necessary!)
e High classification accuracy = unbiased category proportions
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Blogs as a Running Example

Blogs (web logs): web version of a daily diary, with posts listed in
reverse chronological order.

8% of U.S. Internet users (12 million) have blogs
Growth: ~ 0 in 2000; 44-100 million worldwide now.
A democratic technology: 6 million in China and 700,000 in Iran

“We are living through the largest expansion of expressive capability
in the history of the human race”
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One specific quantity of interest

@ Affect about President Bush and 2008 candidates

@ Specific categories: Label Category

—2 extremely negative
—1 negative

0 neutral

1 positive

2 extremely positive
NA  no opinion expressed
NB not a blog

@ Hard case:

Part ordinal, part nominal categorization

“Sentiment categorization is more difficult than topic classification”
Informal language: "my crunchy gf thinks dubya hid the wmd’s, :)!"
Little common internal structure (no inverted pyramid)
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The Conversation about John Kerry's Botched Joke

You know, education — if you make the most of it ... you can
do well. If you don't, you get stuck in Iraq.
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Representing Text as Numbers

o Filter: choose English language blogs that mention Bush

@ Preprocess: convert to lower case, remove punctuation, keep only
word stems (“consist”, “consisted”, “consistency” ~~ “consist”)
@ Code variables: presence/absence of unique unigrams, bigrams,
trigrams
@ Our Example:
e Our 10,771 blog posts about Bush and Clinton:
201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.
o We keep unigrams in > 1% or < 99% of documents: 3,672 variables
o Groups infinite possible posts into “only” 23:672 distinct types
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@ Document Category

(-2 extremely negative

-1 negative

0 neutral
Di=<1 positive
2 extremely positive

NA no opinion expressed
NB not a blog
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@ Document Category

(-2 extremely negative
-1 negative

0 neutral

Di=<1 positive

2 extremely positive
NA no opinion expressed
NB not a blog

\

@ Word Stem Profile:
Sii =1 if “awful” is used, 0 if not
S Si> =1 if "good” is used, 0 if not
Sik =1 if “except” is used, 0 if not
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Quantities of Interest

@ Computer Science: individual document classifications

Di,Ds...,D;
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Quantities of Interest

@ Computer Science: individual document classifications
Dy,D,...,D;

@ Social Science: proportions in each category

P(D = —2)
P(D = —1)
P(D = 0)
P(D)=| P(D=1)
P(D = 2)
P(D = NA)
P(D = NB)

Gary King (Harvard) Content Analysis 9/1



Issues with Existing Statistical Approaches

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications
e Biased without a random sample

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

e Biased without a random sample
e Models P(D|S), but the world works as P(S|D)

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

e Biased without a random sample
e Models P(D|S), but the world works as P(S|D)
o Bias unless

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

e Biased without a random sample
e Models P(D|S), but the world works as P(S|D)
o Bias unless

o P(DIS) encompasses the “true” model.

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

e Biased without a random sample
e Models P(D|S), but the world works as P(S|D)
o Bias unless

o P(DIS) encompasses the “true” model.
@ S spans the space of all predictors of D (i.e., all information in the
document)

Gary King (Harvard) Content Analysis 10/1



Issues with Existing Statistical Approaches

@ Direct Sampling
e Biased without a random sample
e nonrandomness common due to population drift, data subdivisions, etc.
o (Classification of population documents not necessary)

@ Aggregation of model-based individual classifications

e Biased without a random sample
e Models P(D|S), but the world works as P(S|D)
o Bias unless

o P(DIS) encompasses the “true” model.
@ S spans the space of all predictors of D (i.e., all information in the
document)

e Bias even with optimal classification and high % correctly classified
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Using Misclassification Rates to Correct Proportions

Use some method to classify unlabeled documents

Aggregate classifications to category proportions

Use labeled set to estimate misclassification rates (by cross-validation)
Use misclassification rates to correct proportions

Result: vastly improved estimates of category proportions

(No new assumptions beyond that of the classifier)

(still requires random samples, individual classification, etc)
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Formalization from Epidemiology

(Levy and Kass, 1970)

@ Accounting identity for 2 categories:
P(D =1) = (sens)P(D = 1) + (1 — spec)P(D = 2)

@ Solve: N
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Formalization from Epidemiology

(Levy and Kass, 1970)

@ Accounting identity for 2 categories:
P(D =1) = (sens)P(D = 1) + (1 — spec)P(D = 2)

@ Solve:

A

P(D =1) — (1 — spec)

P(D=1)=
( ) sens — (1 — spec)

A

@ Use this equation to correct P(D)
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(King and Lu, 2007)

@ Accounting identity for J categories

J
P(D=j)=3_P(D=jlD=])P(D=])
j'=1

e Drop D calculation, since D = £(S):

J
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Generalizations: J Categories, No Individual Classification

(King and Lu, 2007)

@ Accounting identity for J categories
J

P(D=j)=>_P(D=jD=j)P(D=])
J'=1

e Drop D calculation, since D = £(S):
J
P(S=s)=> P(S=s|D=j)P(D=])

j=1
@ Simplify to an equivalent matrix expression:

P(S) = P(SID)P(D)
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The matrix expression again:

P(S) = P(S|D)P(D)
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The matrix expression again:

P(S) = P(S|D)P(D)
2K %1 2KxJ JIx1

Word stem profiles, by category (estimate in labeled set by tabulation)
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The matrix expression again:

P(S) = P(S|D)P(D)

2K %1 2KxJ JIx1
— Y =Xj

Alternative symbols (to emphasize the linear equation)
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The matrix expression again:

P(S) = P(S|D)P(D)

2K %1 2KxJ JIx1
= Y=X = /j:(X’X)flxly

Solve for quantity of interest (with no error term)
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The matrix expression again:

P(S) = P(S|D)P(D)

2K x1 2KxJ JIx1
— Y=X3 = pB=XX)"Xy

@ Technical estimation issues:
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The matrix expression again:

P(S) = P(S|D)P(D)

2K x1 2KxJ JIx1
— Y=X3 = pB=XX)"Xy

@ Technical estimation issues:

o 2K is enormous, far larger than any existing computer

o P(S) and P(S|D) will be too sparse

o Elements of P(D) must be between 0 and 1 and sum to 1
@ Solutions

e Use subsets of S; average results
e Equivalent to kernel density smoothing of sparse categorical data
o Use constrained LS to constrain P(D) to simplex

@ Uncertainty estimates by bootstrapping
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A Nonrandom Hand-coded Sample
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All existing methods would fail with these data.
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Accurate Estimates

A
o

Estimated P(D)
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Out of Sample Validati Blogs

Affect in Blogs

0.4

0.3

Estimated P(D)

0.1

T
0.0 0.1 0.2 0.3 0.4
Actual P(D)

Gary King (Harvard) Content Analysis 17 /1



Out of Sample Validation: Other Examples

Movie Reviews University Websites
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Misclassification Matrix for Blog Posts

-2 1 0 1 2 NA NB  P(Dy)

2 70 10 01 01 00 02 16 28
-1 33 25 .04 02 01 01 35 .08
0 13 17 13 1 05 02 40 02
1 .07 .06 08 20 25 01 34 03
2 .03 .03 03 22 43| .01 25 03
NA | .04 01 00 00 00 81 14 12
NB | .10 .07 02 02 02 .04 75 45

Gary King (Harvard) Content Analysis 19/1



SIMEX Analysis of “Not a Blog” Category

Category NB
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SIMEX Analysis of “Not a Blog” Category
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SIMEX Analysis of Other Categories
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Verbal Autopsy Methods

@ The Problem

o Policymakers need the cause-specific mortality rate to set research
goals, budgetary priorities, and ameliorative policies

e High quality death registration: only 23/192 countries
o Existing Approaches

o Ask relatives or caregivers 50-100 symptom questions
Ask physicians to determine cause of death (low intercoder reliability)
Apply expert algorithms (high reliability, low validity)
Find deaths with medically certified causes from a local hospital, trace
caregivers to their homes, ask the same symptom questions, and
statistically classify deaths in population (model-dependent, low
accuracy)
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An Alternative Approach

o Document-Category, Cause of Death,

(1 if bladder cancer
2 if cardiovascular disease

D; = { 3 if transportation accident

(J if infectious respiratory
o Word-StemProfile, Symptoms:

Si1 =1 if "breathing difficulties”, 0 if not

S Si>» =1 if “stomach ache”, 0 if not

Sik =1 if “diarrhea”, 0 if not

@ Apply the same methods
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Validation in China

Random Split Sample Bigger Cities Smaller Cities
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Validation in Tanzania

Adult Child
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For more information

http://GKing.Harvard.edu
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