How to Read 100 Million Blogs (\& Classify Deaths Without Physicians)

Gary King
Harvard University

July 17, 2007

References

- Daniel Hopkins and Gary King. "Extracting Systematic Social Science Meaning from Text"

References

- Daniel Hopkins and Gary King. "Extracting Systematic Social Science Meaning from Text"
- Gary King and Ying Lu. "Verbal Autopsy Methods with Multiple Causes of Death," tentatively to appear, Statistical Science

References

- Daniel Hopkins and Gary King. "Extracting Systematic Social Science Meaning from Text"
- Gary King and Ying Lu. "Verbal Autopsy Methods with Multiple Causes of Death," tentatively to appear, Statistical Science
- Copies at http://gking.harvard.edu

Inputs and Target Quantities of Interest

Inputs and Target Quantities of Interest

- Input Data:

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest
- individual document classifications (spam filters)

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest
- individual document classifications (spam filters)
- proportion in each category (proportion email which is spam)

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest
- individual document classifications (spam filters)
- proportion in each category (proportion email which is spam)
- Estimation

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest
- individual document classifications (spam filters)
- proportion in each category (proportion email which is spam)
- Estimation
- Can get the 2 nd by counting the 1st (turns out not to be necessary!)

Inputs and Target Quantities of Interest

- Input Data:
- Large set of text documents
- A set of (mutually exclusive and exhaustive) categories
- A small set of documents hand-coded into the categories
- Quantities of interest
- individual document classifications (spam filters)
- proportion in each category (proportion email which is spam)
- Estimation
- Can get the 2nd by counting the 1st (turns out not to be necessary!)
- High classification accuracy \nRightarrow unbiased category proportions

Blogs as a Running Example

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs
- Growth: ≈ 0 in 2000; 44-100 million worldwide now.

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs
- Growth: ≈ 0 in 2000; 44-100 million worldwide now.
- A democratic technology: 6 million in China and 700,000 in Iran

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs
- Growth: ≈ 0 in 2000; 44-100 million worldwide now.
- A democratic technology: 6 million in China and 700,000 in Iran
- "We are living through the largest expansion of expressive capability in the history of the human race"

One specific quantity of interest

One specific quantity of interest

- Affect about President Bush and 2008 candidates

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:
- Part ordinal, part nominal categorization

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:
- Part ordinal, part nominal categorization
- "Sentiment categorization is more difficult than topic classification"

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:
- Part ordinal, part nominal categorization
- "Sentiment categorization is more difficult than topic classification"
- Informal language: "my crunchy gf thinks dubya hid the wmd's, :)!"

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories: Label Category
-2 extremely negative
-1 negative
0 neutral
1 positive
2 extremely positive
NA no opinion expressed
NB not a blog
- Hard case:
- Part ordinal, part nominal categorization
- "Sentiment categorization is more difficult than topic classification"
- Informal language: "my crunchy gf thinks dubya hid the wmd's, :)!"
- Little common internal structure (no inverted pyramid)

The Conversation about John Kerry's Botched Joke

The Conversation about John Kerry's Botched Joke

You know, education - if you make the most of it . . you can do well. If you don't, you get stuck in Iraq.

The Conversation about John Kerry's Botched Joke

You know, education - if you make the most of it . . you can do well. If you don't, you get stuck in Iraq.

Affect Towards John Kerry

Representing Text as Numbers

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$
- Code variables: presence/absence of unique unigrams, bigrams, trigrams

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$
- Code variables: presence/absence of unique unigrams, bigrams, trigrams
- Our Example:

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$
- Code variables: presence/absence of unique unigrams, bigrams, trigrams
- Our Example:
- Our 10,771 blog posts about Bush and Clinton: 201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$
- Code variables: presence/absence of unique unigrams, bigrams, trigrams
- Our Example:
- Our 10,771 blog posts about Bush and Clinton: 201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.
- keep only unigrams in $>1 \%$ or $<99 \%$ of documents: 3,672 variables

Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" $\rightsquigarrow ~ " c o n s i s t ") ~$
- Code variables: presence/absence of unique unigrams, bigrams, trigrams
- Our Example:
- Our 10,771 blog posts about Bush and Clinton: 201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.
- keep only unigrams in $>1 \%$ or $<99 \%$ of documents: 3,672 variables
- Groups infinite possible posts into "only" $2^{3,672}$ distinct types

Notation

Notation

- Document Category
$D_{i}= \begin{cases}-2 & \text { extremely negative } \\ -1 & \text { negative } \\ 0 & \text { neutral } \\ 1 & \text { positive } \\ 2 & \text { extremely positive } \\ \text { NA } & \text { no opinion expressed } \\ \text { NB } & \text { not a blog }\end{cases}$

Notation

- Document Category

$$
D_{i}= \begin{cases}-2 & \text { extremely negative } \\ -1 & \text { negative } \\ 0 & \text { neutral } \\ 1 & \text { positive } \\ 2 & \text { extremely positive } \\ \text { NA } & \text { no opinion expressed } \\ \text { NB } & \text { not a blog }\end{cases}
$$

- Word Stem Profile:

$$
\mathbf{S}_{i}= \begin{cases}S_{i 1}=1 & \text { if "awful" is used, } 0 \text { if not } \\ S_{i 2}=1 & \text { if "good" is used, } 0 \text { if not } \\ \vdots & \vdots \\ S_{i K}=1 & \text { if "except" is used, } 0 \text { if not }\end{cases}
$$

Quantities of Interest

Quantities of Interest

- Computer Science: individual document classifications

$$
D_{1}, D_{2} \ldots, D_{L}
$$

Quantities of Interest

- Computer Science: individual document classifications

$$
D_{1}, D_{2} \ldots, D_{L}
$$

- Social Science: proportions in each category

$$
P(D)=\left(\begin{array}{c}
P(D=-2) \\
P(D=-1) \\
P(D=0) \\
P(D=1) \\
P(D=2) \\
P(D=\mathrm{NA}) \\
P(D=\mathrm{NB})
\end{array}\right)
$$

Issues with Existing Statistical Approaches

Issues with Existing Statistical Approaches

(1) Direct Sampling

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$
- Bias unless

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$
- Bias unless
- $P(D \mid \mathbf{S})$ encompasses the "true" model.

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$
- Bias unless
- $P(D \mid \mathbf{S})$ encompasses the "true" model.
- \mathbf{S} spans the space of all predictors of D (i.e., all information in the document)

Issues with Existing Statistical Approaches

(1) Direct Sampling

- Biased without a random sample
- nonrandomness common due to population drift, data subdivisions, etc.
- (Classification of population documents not necessary)
(2) Aggregation of model-based individual classifications
- Biased without a random sample
- Models $P(D \mid \mathbf{S})$, but the world works as $P(\mathbf{S} \mid D)$
- Bias unless
- $P(D \mid \mathbf{S})$ encompasses the "true" model.
- \mathbf{S} spans the space of all predictors of D (i.e., all information in the document)
- Bias even with optimal classification and high \% correctly classified

Using Misclassification Rates to Correct Proportions

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)
- Use misclassification rates to correct proportions

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)
- Use misclassification rates to correct proportions
- Result: vastly improved estimates of category proportions

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)
- Use misclassification rates to correct proportions
- Result: vastly improved estimates of category proportions
- (No new assumptions beyond that of the classifier)

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)
- Use misclassification rates to correct proportions
- Result: vastly improved estimates of category proportions
- (No new assumptions beyond that of the classifier)
- (still requires random samples, individual classification, etc)

Formalization from Epidemiology

(Levy and Kass, 1970)

Formalization from Epidemiology

(Levy and Kass, 1970)

- Accounting identity for 2 categories:

$$
P(\hat{D}=1)=(\text { sens }) P(D=1)+(1-\text { spec }) P(D=2)
$$

Formalization from Epidemiology

(Levy and Kass, 1970)

- Accounting identity for 2 categories:

$$
P(\hat{D}=1)=(\text { sens }) P(D=1)+(1-\text { spec }) P(D=2)
$$

- Solve:

$$
P(D=1)=\frac{P(\hat{D}=1)-(1-\mathrm{spec})}{\text { sens }-(1-\mathrm{spec})}
$$

Formalization from Epidemiology

(Levy and Kass, 1970)

- Accounting identity for 2 categories:

$$
P(\hat{D}=1)=(\text { sens }) P(D=1)+(1-\text { spec }) P(D=2)
$$

- Solve:

$$
P(D=1)=\frac{P(\hat{D}=1)-(1-\text { spec })}{\text { sens }-(1-\text { spec })}
$$

- Use this equation to correct $P(\hat{D})$

Generalizations: J Categories, No Individual Classification

 (King and Lu, 2007)
Generalizations: J Categories, No Individual Classification

 (King and Lu, 2007)- Accounting identity for J categories

$$
P(\hat{D}=j)=\sum_{j^{\prime}=1}^{J} P\left(\hat{D}=j \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

Generalizations: J Categories, No Individual Classification

 (King and Lu, 2007)- Accounting identity for J categories

$$
P(\hat{D}=j)=\sum_{j^{\prime}=1}^{J} P\left(\hat{D}=j \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

- Drop \hat{D} calculation, since $\hat{D}=f(\mathbf{S})$:

$$
P(\mathrm{~S}=s)=\sum_{j^{\prime}=1}^{J} P\left(\mathrm{~S}=s \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

Generalizations: J Categories, No Individual Classification

 (King and Lu, 2007)- Accounting identity for J categories

$$
P(\hat{D}=j)=\sum_{j^{\prime}=1}^{J} P\left(\hat{D}=j \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

- Drop \hat{D} calculation, since $\hat{D}=f(\mathbf{S})$:

$$
P(\mathrm{~S}=s)=\sum_{j^{\prime}=1}^{J} P\left(\mathrm{~S}=s \mid D=j^{\prime}\right) P\left(D=j^{\prime}\right)
$$

- Simplify to an equivalent matrix expression:

$$
P(\mathbf{S})=P(\mathbf{S} \mid D) P(D)
$$

Estimation

The matrix expression again:

$$
\left.\underset{2^{K} \times 1}{P(\mathbf{S})}=\underset{2^{K} \times J}{P(\mathbf{S}} \mid D\right) P(\underset{J \times 1}{(D)}
$$

Estimation

The matrix expression again:

$$
\underset{2^{K} \times 1}{P(\mathbf{S})}=\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \underset{J \times 1}{(D)}
$$

Document category proportions (quantity of interest)

Estimation

The matrix expression again:

$$
\underset{2^{K} \times 1}{P(\mathbf{S})}=\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \underset{J \times 1}{(D)}
$$

Word stem profile proportions (estimate in unlabeled set by tabulation)

Estimation

The matrix expression again:

$$
\underset{2^{K} \times 1}{P(\mathbf{S})}=\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \underset{J \times 1}{(D)}
$$

Word stem profiles, by category (estimate in labeled set by tabulation)

Estimation

The matrix expression again:

$$
\begin{array}{rl}
P(\mathbf{S}) & =\underset{2^{K} \times J}{(\mathbf{S} \mid D)} \\
2^{K} \times 1 \\
\Longrightarrow \quad Y & P(D \times 1 \\
\Longrightarrow \quad Y \beta
\end{array}
$$

Alternative symbols (to emphasize the linear equation)

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P \underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \underset{J \times 1}{P(D)} \\
& 2^{K} \times 1 \\
& \Longrightarrow Y
\end{aligned}=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y .
$$

Solve for quantity of interest (with no error term)

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
& 2^{K} \times 1 \\
& \Longrightarrow Y(D) \\
& \Longrightarrow=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:

Estimation

The matrix expression again:

$$
\begin{array}{rl}
P(\mathbf{S}) & =\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
2^{K} \times 1 \\
\Longrightarrow Y & P(D) \\
\Longrightarrow & Y \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{array}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer

Estimation

The matrix expression again:

$$
\begin{array}{rl}
P(\mathbf{S}) & =\underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
2^{K} \times 1 \\
\Longrightarrow Y & P(D) \\
\Longrightarrow & Y \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{array}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P \underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
& 2^{K} \times 1 \\
& \Longrightarrow Y(D \times 1 \\
& \Longrightarrow=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P(\mathbf{S} \mid D) P(D) \\
& 2^{K} \times 1 \quad 2^{K} \times J \quad J \times 1 \\
& \Longrightarrow Y=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $P(D)$ must be between 0 and 1 and sum to 1
- Solutions

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P(\mathbf{S} \mid D) P(D) \\
& 2^{K} \times 1 \quad 2^{K} \times J \quad J \times 1 \\
& \Longrightarrow Y=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1
- Solutions
- Use subsets of S; average results

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P \underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
& 2^{K} \times 1 \\
& \Longrightarrow Y(D \times 1 \\
& \Longrightarrow=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1
- Solutions
- Use subsets of S; average results
- Equivalent to kernel density smoothing of sparse categorical data

Estimation

The matrix expression again:

$$
\begin{array}{rl}
P(\mathbf{S}) & =P \underset{2^{K} \times J}{P(\mathbf{S} \mid D)} \\
2^{K} \times 1 \\
\Longrightarrow Y & P(D) \\
\Longrightarrow Y \beta \quad & Y \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{array}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1
- Solutions
- Use subsets of S; average results
- Equivalent to kernel density smoothing of sparse categorical data
- Use constrained LS to constrain $P(D)$ to simplex

Estimation

The matrix expression again:

$$
\begin{aligned}
& P(\mathbf{S})=P(\mathbf{S} \mid D) P(D) \\
& 2^{K} \times 1 \quad 2^{K} \times J \quad J \times 1 \\
& \Longrightarrow Y=X \beta \quad \Longrightarrow \quad \beta=\left(X^{\prime} X\right)^{-1} X^{\prime} y
\end{aligned}
$$

- Technical estimation issues:
- 2^{K} is enormous, far larger than any existing computer
- $P(\mathbf{S})$ and $P(\mathbf{S} \mid D)$ will be too sparse
- Elements of $\mathrm{P}(\mathrm{D})$ must be between 0 and 1 and sum to 1
- Solutions
- Use subsets of S; average results
- Equivalent to kernel density smoothing of sparse categorical data
- Use constrained LS to constrain $P(D)$ to simplex
- Uncertainty estimates by bootstrapping

A Nonrandom Hand-coded Sample

All existing methods would fail with these data.

Accurate Estimates

Out of Sample Validation: Blogs

Out of Sample Validation: Other Examples

Misclassification Matrix for Blog Posts

	-2	-1	0	1	2	NA	NB	$P\left(D_{1}\right)$
-2	.70	.10	.01	.01	.00	.02	.16	.28
-1	.33	.25	.04	.02	.01	.01	.35	.08
0	.13	.17	.13	.11	.05	.02	.40	.02
1	.07	.06	.08	.20	.25	.01	.34	.03
2	.03	.03	.03	.22	.43	.01	.25	.03
NA	.04	.01	.00	.00	.00	.81	.14	.12
NB	.10	.07	.02	.02	.02	.04	.75	.45

SIMEX Analysis of "Not a Blog" Category

Category NB

SIMEX Analysis of "Not a Blog" Category

Category NB

SIMEX Analysis of "Not a Blog" Category

Category NB

SIMEX Analysis of Other Categories

Category -2

Category - 1

Category 0

Category 1

Category 2

Category NA

Verbal Autopsy Methods

Verbal Autopsy Methods

- The Problem

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only $23 / 192$ countries

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only 23/192 countries
- Existing Approaches

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only $23 / 192$ countries
- Existing Approaches
- Ask relatives or caregivers 50-100 symptom questions

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only $23 / 192$ countries
- Existing Approaches
- Ask relatives or caregivers 50-100 symptom questions
- Ask physicians to determine cause of death (low intercoder reliability)

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only 23/192 countries
- Existing Approaches
- Ask relatives or caregivers 50-100 symptom questions
- Ask physicians to determine cause of death (low intercoder reliability)
- Apply expert algorithms (high reliability, low validity)

Verbal Autopsy Methods

- The Problem
- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only 23/192 countries
- Existing Approaches
- Ask relatives or caregivers 50-100 symptom questions
- Ask physicians to determine cause of death (low intercoder reliability)
- Apply expert algorithms (high reliability, low validity)
- Find deaths with medically certified causes from a local hospital, trace caregivers to their homes, ask the same symptom questions, and statistically classify deaths in population (model-dependent, low accuracy)

An Alternative Approach

An Alternative Approach

- Document Category, Cause of Death,

$$
D_{i}= \begin{cases}1 & \text { if bladder cancer } \\ 2 & \text { if cardiovascular disease } \\ 3 & \text { if transportation accident } \\ \vdots & \vdots \\ J & \text { if infectious respiratory }\end{cases}
$$

An Alternative Approach

- Document Category, Cause of Death,

$$
D_{i}= \begin{cases}1 & \text { if bladder cancer } \\ 2 & \text { if cardiovascular disease } \\ 3 & \text { if transportation accident } \\ \vdots & \vdots \\ J & \text { if infectious respiratory }\end{cases}
$$

- Word Stem Profile, Symptoms:

$$
\mathrm{S}_{i}= \begin{cases}S_{i 1}=1 & \text { if "breathing difficulties", } 0 \text { if not } \\ S_{i 2}=1 & \text { if "stomach ache", } 0 \text { if not } \\ \vdots & \vdots \\ S_{i K}=1 & \text { if "diarrhea", } 0 \text { if not }\end{cases}
$$

An Alternative Approach

- Document Category, Cause of Death,

$$
D_{i}= \begin{cases}1 & \text { if bladder cancer } \\ 2 & \text { if cardiovascular disease } \\ 3 & \text { if transportation accident } \\ \vdots & \vdots \\ J & \text { if infectious respiratory }\end{cases}
$$

- Word Stem Profile, Symptoms:

$$
\mathrm{S}_{i}= \begin{cases}S_{i 1}=1 & \text { if "breathing difficulties", } 0 \text { if not } \\ S_{i 2}=1 & \text { if "stomach ache", } 0 \text { if not } \\ \vdots & \vdots \\ S_{i K}=1 & \text { if "diarrhea", } 0 \text { if not }\end{cases}
$$

- Apply the same methods

Validation in China

Validation in Tanzania

For more information

http://GKing.Harvard.edu

