How to Read 100 Million Blogs (& Classify Deaths Without Physicians)

Gary King Harvard University

August 23, 2007

References

- Daniel Hopkins and Gary King. "Extracting Systematic Social Science Meaning from Text"
- Gary King and Ying Lu. "Verbal Autopsy Methods with Multiple Causes of Death," tentatively to appear, Statistical Science
- Copies at http://gking.harvard.edu

Gary King (Harvard) Content Analysis 2 / 29

Inputs and Target Quantities of Interest

- Input Data:
 - Large set of text documents
 - A set of (mutually exclusive and exhaustive) categories
 - A small set of documents hand-coded into the categories
- Quantities of interest
 - individual document classifications (spam filters)
 - proportion in each category (proportion email which is spam)
- Estimation
 - Can get the 2nd by counting the 1st (turns out not to be necessary!)
 - High classification accuracy
 ⇒ unbiased category proportions

Blogs as a Running Example

- Blogs (web logs): web version of a daily diary, with posts listed in reverse chronological order.
- 8% of U.S. Internet users (12 million) have blogs
- Growth: ≈ 0 in 2000; 44–100 million worldwide now.
- A democratic technology: 6 million in China and 700,000 in Iran
- "We are living through the largest expansion of expressive capability in the history of the human race"

One specific quantity of interest

- Affect about President Bush and 2008 candidates
- Specific categories:

<u>Label</u> <u>Category</u>

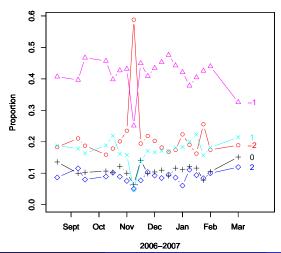
- -2 extremely negative
- -1 negative
 - 0 neutral
 - 1 positive
 - 2 extremely positive
- NA no opinion expressed
- NB not a blog

- Hard case:
 - Part ordinal, part nominal categorization
 - "Sentiment categorization is more difficult than topic classification"
 - Informal language: "my crunchy gf thinks dubya hid the wmd's, :)!"
 - Little common internal structure (no inverted pyramid)

The Conversation about John Kerry's Botched Joke

You know, education — if you make the most of it . . . you can do well. If you don't, you get stuck in Iraq.

Affect Towards John Kerry



Representing Text as Numbers

- Filter: choose English language blogs that mention Bush
- Preprocess: convert to lower case, remove punctuation, keep only word stems ("consist", "consisted", "consistency" \(\sim \) "consist")
- Code variables: presence/absence of unique unigrams, bigrams, trigrams
- Our Example:
 - Our 10,771 blog posts about Bush and Clinton: 201,676 unigrams, 2,392,027 bigrams, 5,761,979 trigrams.
 - ullet keep only unigrams in > 1% or < 99% of documents: 3,672 variables
 - Groups infinite possible posts into "only" 2^{3,672} distinct types

Gary King (Harvard) Content Analysis 7 / 29

Notation

Document Category

$$D_i = \begin{cases} -2 & \text{extremely negative} \\ -1 & \text{negative} \\ 0 & \text{neutral} \\ 1 & \text{positive} \\ 2 & \text{extremely positive} \\ \text{NA} & \text{no opinion expressed} \\ \text{NB} & \text{not a blog} \end{cases}$$

Word Stem Profile:

$$\mathbf{S}_i = egin{cases} S_{i1} = 1 & ext{if "awful" is used, 0 if not} \ S_{i2} = 1 & ext{if "good" is used, 0 if not} \ dots & dots \ S_{iK} = 1 & ext{if "except" is used, 0 if not} \end{cases}$$

Quantities of Interest

Computer Science: individual document classifications

$$D_1, D_2 \ldots, D_L$$

Social Science: proportions in each category

$$P(D) = \begin{pmatrix} P(D = -2) \\ P(D = -1) \\ P(D = 0) \\ P(D = 1) \\ P(D = 2) \\ P(D = NA) \\ P(D = NB) \end{pmatrix}$$

Issues with Existing Statistical Approaches

- Oirect Sampling
 - Biased without a random sample
 - nonrandomness common due to population drift, data subdivisions, etc.
 - (Classification of population documents not necessary)
- Aggregation of model-based individual classifications
 - Biased without a random sample
 - Models $P(D|\mathbf{S})$, but the world works as $P(\mathbf{S}|D)$
 - Bias unless
 - P(D|S) encompasses the "true" model.
 - S spans the space of all predictors of D (i.e., all information in the document)
 - Bias even with optimal classification and high % correctly classified

Using Misclassification Rates to Correct Proportions

- Use some method to classify unlabeled documents
- Aggregate classifications to category proportions
- Use labeled set to estimate misclassification rates (by cross-validation)
- Use misclassification rates to correct proportions
- Result: vastly improved estimates of category proportions
- (No new assumptions beyond that of the classifier)
- (still requires random samples, individual classification, etc)

Gary King (Harvard) Content Analysis 11 / 29

Formalization from Epidemiology

(Levy and Kass, 1970)

Accounting identity for 2 categories:

$$P(\hat{D} = 1) = (\text{sens})P(D = 1) + (1 - \text{spec})P(D = 2)$$

Solve:

$$P(D = 1) = \frac{P(\hat{D} = 1) - (1 - \text{spec})}{\text{sens} - (1 - \text{spec})}$$

• Use this equation to correct $P(\hat{D})$

Generalizations: *J* Categories, No Individual Classification (King and Lu, 2007)

Accounting identity for J categories

$$P(\hat{D} = j) = \sum_{j'=1}^{J} P(\hat{D} = j | D = j') P(D = j')$$

• Drop \hat{D} calculation, since $\hat{D} = f(\mathbf{S})$:

$$P(S = s) = \sum_{j'=1}^{J} P(S = s|D = j')P(D = j')$$

• Simplify to an equivalent matrix expression:

$$P(\mathbf{S}) = P(\mathbf{S}|D)P(D)$$

Estimation

The matrix expression again:

$$P(\mathbf{S}) = P(\mathbf{S}|D)P(D)$$

$${}_{2^{K} \times 1} \qquad {}_{2^{K} \times J} \qquad {}_{J \times 1}$$

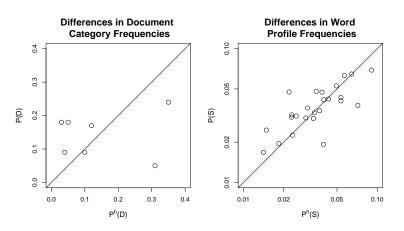
$$\implies Y = X\beta \qquad \implies \qquad \beta = (X'X)^{-1}X'y$$

Document category proportions (quantity of interest) Word stem profile

proportions (estimate in unlabeled set by tabulation) Word stem profiles, by category (estimate in *labeled* set by tabulation) Alternative symbols (to emphasize the linear equation) Solve for quantity of interest (with no error term)

- Technical estimation issues:
 - ullet 2^K is enormous, far larger than any existing computer
 - P(S) and P(S|D) will be too sparse
 - Elements of P(D) must be between 0 and 1 and sum to 1
- Solutions

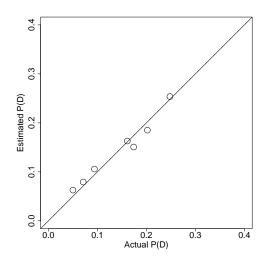
A Nonrandom Hand-coded Sample



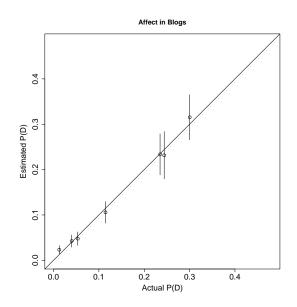
All existing methods would fail with these data.

Gary King (Harvard) Content Analysis 15 / 29

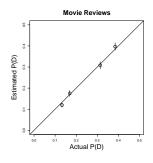
Accurate Estimates

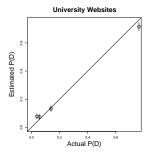


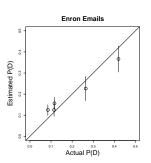
Out of Sample Validation: Blogs



Out of Sample Validation: Other Examples







Verbal Autopsy Methods

The Problem

- Policymakers need the cause-specific mortality rate to set research goals, budgetary priorities, and ameliorative policies
- High quality death registration: only 23/192 countries
- Existing Approaches
 - Ask relatives or caregivers 50-100 symptom questions
 - Ask physicians to determine cause of death (low intercoder reliability)
 - Apply expert algorithms (high reliability, low validity)
 - Find deaths with medically certified causes from a local hospital, trace caregivers to their homes, ask the same symptom questions, and statistically classify deaths in population (model-dependent, low accuracy)

An Alternative Approach

Document Category, Cause of Death,

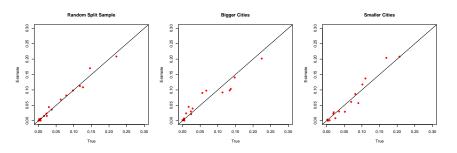
$$D_i = \begin{cases} 1 & \text{if bladder cancer} \\ 2 & \text{if cardiovascular disease} \\ 3 & \text{if transportation accident} \\ \vdots & \vdots \\ J & \text{if infectious respiratory} \end{cases}$$

Word Stem Profile, Symptoms:

$$\mathbf{S}_i = egin{cases} S_{i1} = 1 & ext{if "breathing difficulties", 0 if not} \ S_{i2} = 1 & ext{if "stomach ache", 0 if not} \ dots & dots \ S_{iK} = 1 & ext{if "diarrhea", 0 if not} \end{cases}$$

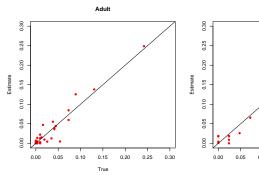
• Apply the same methods

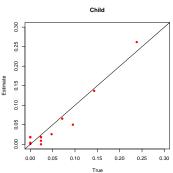
Validation in China



Gary King (Harvard) Content Analysis 21 / 2

Validation in Tanzania





For more information

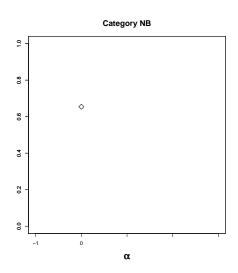
http://GKing.Harvard.edu

Misclassification Matrix for Blog Posts

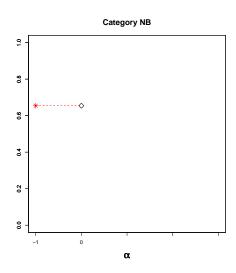
	-2	-1	0	1	2	NA	NB	$P(D_1)$
-2	.70	.10	.01	.01	.00	.02	.16	.28
-1	.33	.25	.04	.02	.01	.01	.35	.08
0	.13	.17	.13	.11	.05	.02	.40	.02
1	.07	.06	.08	.20	.25	.01	.34	.03
2	. 70 .33 .13 .07 .03	.03	.03	.22	.43	.01	.25	.03
NA	.04	.01	.00	.00	.00	.81	.14	.12
NB	.04 .10	.07	.02	.02	.02	.04	.75	.45

Gary King (Harvard) Content Analysis 24 / 29

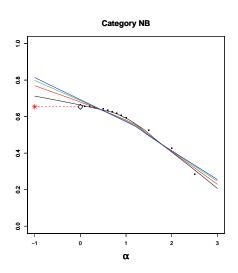
SIMEX Analysis of "Not a Blog" Category



SIMEX Analysis of "Not a Blog" Category

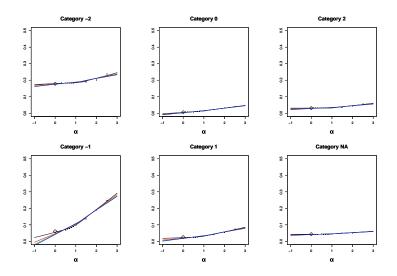


SIMEX Analysis of "Not a Blog" Category



27 / 29

SIMEX Analysis of Other Categories



Gary King (Harvard) Content Analysis 28 / 29

What can go wrong?

- We assume $P^h(\mathbf{S}|D) = P(\mathbf{S}|D)$
- Must choose word stem subset size (a smoothing parameter)
- Need enough labeled documents in each category (can hand code more if Cl's are too large, perhaps via case-control methods)
- Need sufficient information in: documents, categorization scheme, numerical summaries of the documents, and hand-codings
- Use additional hand coding to verify assumptions

Gary King (Harvard) Content Analysis 29 / 29