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0.1 Introduction

Evans and King (Forthcoming, 2021) develops valid statistical methods for analyzing

“differentially private” data, where specially calibrated random noise has been added to

provide formal privacy guarantees. This random noise creates measurement error which,

if ignored in the analysis stage, induces statistical bias. The approach adapts methods

developed to correct for naturally occurring measurement error, with special attention to

computational efficiency for large datasets. The result is statistically consistent and ap-

proximately unbiased linear regression estimates, including interaction terms, quadratics,

and some descriptive statistics.

Evans and King (Forthcoming, 2021) corrects regression coefficients when mean-zero

gaussian noise is added directly to covariates. However nonlinear transformations of vari-

ables included in the regression and measured with error require different statistical pro-

cedures to avoid bias. In this paper, we thus develop a more general framework for incor-

porating nonlinear transformed variables. The simple insight is that the original estimator

corrects least squares (LS) coefficients by adjusting the observed moments of the noisy

variables according to the known error variance. We show here that, even if mean-zero

noise is not added to the transformed variables directly (which is required in the original

article), the estimator can still be applied if, firstly, the bias of the noisy transformed vari-

able is approximately zero and, secondly, a reasonable estimator for the noise variance

can be constructed using our knowledge of the error in the untransformed variables. We

provide simulations demonstrating the effectiveness of this approach in the case of noisy

proportions and noisy weighted averages.

1 Strategy and Notation

Following the notation in Evans and King (Forthcoming, 2021), let Z be an n ×K data

matrix that we do not have access to for privacy reasons. Instead we observe X = Z + v,

where v ∼ N (0, S2). I.e., v is an n×K error matrix, and S2 is a K ×K diagonal matrix

where diagonal elements represents the variance of the independent noise in each of the

K private variables. Let Y be an outcome of interest which we observe either with or
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without error. Evans and King (Forthcoming, 2021) proposed the following estimator for

β where Y = Zβ + ε:

β̃ =

(
X ′X

n
− S2

)−1
X ′y

n
(1)

where they show plim(β̃) = β. They key idea here is to correct the moments of X ′X by

accounting for the known measurement error variance, S2.

We now consider the extension where design matrix includes non-linear transforma-

tions of noisy variables. We focus on the univariate setting for expositional purposes but

the method immediately extends to models with multiple covariates (transformed or un-

transformed) with independent error. Thus, let Y = γ0 + γ1g(Z) + u, where g(·) is a

non-linear function. Knowledge of S2 is no longer sufficient to apply the estimator in

(1) since the variance of a transformed variable is not the same as the variance of the

untransformed variables, i.e., Var(g(X)|Z) 6= S2. Moreover, non-linear transformations

may introduce considerable bias: E[X|Z] = Z does not imply that E(g(X)|Z] = g(Z).

In the presence of such bias, correcting only for the moment-inflation from the variance is

not sufficient to recover a consistent estimate of γ; bias will remain. The converse impli-

cation is that if we are able to demonstrate that the transformed variable is approximately

unbiased and quantify the variance, Var(g(X)|Z), then we can apply estimator (1). We

will demonstrate this in the remainder of the paper.

2 Noisy Proportions

To make this concrete, consider the case where the Zj , for j ∈ 1...K, are counts, and g()

is a function that calculates the proportion of those counts in the first category. We denote

this proportion by p where p ≡ Z1∑K
j=1 Zj

. We then denote the same function applied to X

instead by r ≡ X1∑K
j=1 Xj

. Our goal is to evaluate the bias of r. We start by approximat-

ing the expectation of r using a second-order Taylor approximation (we will implicitly

condition on Z throughout):
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E[r] = E

[
X1∑K
j=1Xj

]

≈ E[X1]

E[
∑K

j=1Xj]
−

Cov
(
X1,

∑K
j=1Xj

)
E[
∑K

j=1Xj]2
+

E[X1]

E[
∑K

j=1Xj]3
Var

(
K∑
j=1

Xj

)

=
X1∑K
j=1 Zj

− S2
1(∑K

j=1 Zj

)2 +
Z1(∑K

j=1 Zj

)3
(

K∑
j=1

S2
j

)
(2)

The bias of r as an estimate of p is hence:

≈ Z1(∑K
j=1 Zj

)3
(

K∑
j=1

S2
j

)
− S2

1(∑K
j=1 Zj

)2
For intuition, suppose S1 = Sj and zj > 0 for all j, then the maximum the bias could

be is
(

S2
1

Z2
1

)
· (K − 1). Hence, this suggests that for contexts in which the noise to signal

ratio is moderate, we can generally approximate the bias as 0. We will show that this is

reasonable via simulation.

We can also approximate the variance of r using a Taylor expansion. Denote the

variance of r by S2
r :

S2
r = Var

(
X∑K

j=1Xj

)

≈ Var(X1)

E[
∑K

j=1Xj]2
− 2E[X1]

E[
∑K

j=1Xj]3
Cov

(
X1,

K∑
j=1

Xj

)
+

E[X1]
2

E[
∑K

j=1Xj]4
Var

(
K∑
j=1

Xj

)

S2
r =

S2
1(∑K

j=1 Zj

)2 − 2Z1(∑K
j=1 Zj

)3S2
1 +

Z2
1(∑K

j=1 Zj

)4
(

K∑
j=1

S2
j

)
(3)

We do not observed the Z’s, so for our estimator we can plug in the x’s, which are

unbiased estimates of the z’s, to yield our estimator for the variance, Ŝr.
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3 Noisy Weighted Averages

We next consider the natural extension of a noisy proportion – a noise weighted average.

In particular, consider the proportion w ≡
∑J

j=1 cjpj and pk ≡ Xk∑J
j=1 Xj

, where cj is some

known constant. As before, we do not observe the weights directly and hence can only

calculate a noisy version a ≡
∑J

j=1 cjrj , where rk ≡ Xk∑J
j=1 Xj

.

Like in the previous section, a reasonable approach to correcting OLS coefficients

estimated with a rather than w is to estimate the variance of the error in a and adjust

accordingly using the estimator in Evans and King (Forthcoming, 2021). Note that since

a weighted average is a linear function of the ratios, if the ratios are unbiased (meaning

the error is mean 0) then the weighted average is also unbiased. We demonstrated that this

is a reasonable assumption if the noise to signal ratio is moderate.

All that is left, then, is to estimate the variance, which we do via the multivariate delta

method. The multivariate delta method tells us that:

Var(w) ≈
J∑

j=1

(
∂w

∂Xj

)2

Var(Xj)

Which can be written as:

=
J∑

j=1

(
J∑

k=1

∂ckrk
∂Xj

)2

Var(Xj)

Where:

∂ckrk
∂X`

=


ck
∑

j′ 6=`Xj′

(
∑

j Xj)2
if k = `

−ckXk

(
∑

j Xj)2
if k 6= `

=⇒ Var(w) ≈
∑
j

[(∑
j′ 6=j

−cj′Xj′

(
∑

j Xj)2

)
+
cj
∑

j′ Xj

(
∑

j Xj)2

]2
S2
j

Therefore our final variance estimator is:

S2
a =

1

n

n∑
i=1

J∑
j=1

[(∑
j′ 6=j

−cj′Xj′

(
∑

j Xj)2

)
+
cj
∑

j′ Xj′

(
∑

j Xj)2

]2
S2
j (4)
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Figure 1: Statistical bias for noisy proportion (left panel) and noisy weighted average
(right panel). In both panels, results for least square coefficients are in orange and for our
estimator in blue.

4 Simulation

We now demonstrate the finite sample properties of the proposed approach. We begin by

setting n = 100, 000, Z1 ∼ Pois(10) and Z2 ∼ Pois(50). We draw Yi = 1−β( Z1
Z1+Z2

)+εi

where εi ∼ N (0, 1). We fix the noise in X2 to S2 =
√
50
2

and vary the noise variance in

X1. For each level of S1 we run 500 simulations. We use the same underlying Z’s and

X’s for our weighted average model, but now draw Yi = 1 − βwi + ui where wi =

c1
Z1i

Z1i+Z2i
+ c2

Z2i

Z1i+Z2i
. We set c1 = 1 and c2 = 2 and draw ui ∼ N (0, 1). We fix β = 1

across both simulation settings.

In Figure 1, we give results for point estimates averaged over our 500 simulations. In

the left planel, we plot the statistical bias (vertically) for our model estimated with a noisy

proportion as a covariate where the standard deviation of the noise in the untransformed

variable, X1, is increasing along the horizontal axis. The right panel is analogous but our

covariate is now a noisy weighted-average. Im both cases, we see that naively running

an OLS regression with the noisy transformed variables introduces increasing bias and

the underlying noise increases. In contrast, our alternative estimator, which explicitly

accounts for the variance in the transformed variables is always approximately unbiased

in this noise range. The far right of the figures is a context where the noise in X1 is equal

to the standard deviation of Z1.
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5 Concluding Remarks

The results here should extend to other nonlinear transformations, such as logs, square

roots, etc., although in every case they should be checked by following the analytical and

Monte Carlo methods introduced in this paper.
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