Publications by Year: 2018

2018
Management of Off-Task Time in a Participatory Environment
Gary King, Brian Lukoff, and Eric Mazur. 5/8/2018. “Management of Off-Task Time in a Participatory Environment .” United States of America US 9,965,972 B2 ( U.S Patent and Trademark Office).Abstract
Participatory activity carried out using electronic devices is enhanced by occupying the attention of participants who complete a task before a set completion time. For example, a request or question having an expected response time less than the remaining answer time may be provided to early-finishing participants. In another of the many embodiments, the post-response tasks are different for each participant, depending upon, for example, the rate at which the participant has successfully provided answers to previous questions. This ensures continuous engagement of all participants.
Patent
Use of a Social Annotation Platform for Pre-Class Reading Assignments in a Flipped Introductory Physics Class
Kelly Miller, Brian Lukoff, Gary King, and Eric Mazur. 3/2018. “Use of a Social Annotation Platform for Pre-Class Reading Assignments in a Flipped Introductory Physics Class.” Frontiers in Education, 3, 8, Pp. 1-12. Publisher's VersionAbstract
In this paper, we illustrate the successful implementation of pre-class reading assignments through a social learning platform that allows students to discuss the reading online with their classmates. We show how the platform can be used to understand how students are reading before class. We find that, with this platform, students spend an above average amount of time reading (compared to that reported in the literature) and that most students complete their reading assignments before class. We identify specific reading behaviors that are predictive of in-class exam performance. We also demonstrate ways that the platform promotes active reading strategies and produces high-quality learning interactions between students outside class. Finally, we compare the exam performance of two cohorts of students, where the only difference between them is the use of the platform; we show that students do significantly better on exams when using the platform.
Article
A Theory of Statistical Inference for Matching Methods in Causal Research
Stefano M. Iacus, Gary King, and Giuseppe Porro. 2018. “A Theory of Statistical Inference for Matching Methods in Causal Research.” Political Analysis, Pp. 1-23.Abstract

Researchers who generate data often optimize efficiency and robustness by choosing stratified over simple random sampling designs. Yet, all theories of inference proposed to justify matching methods are based on simple random sampling. This is all the more troubling because, although these theories require exact matching, most matching applications resort to some form of ex post stratification (on a propensity score, distance metric, or the covariates) to find approximate matches, thus nullifying the statistical properties these theories are designed to ensure. Fortunately, the type of sampling used in a theory of inference is an axiom, rather than an assumption vulnerable to being proven wrong, and so we can replace simple with stratified sampling, so long as we can show, as we do here, that the implications of the theory are coherent and remain true. Properties of estimators based on this theory are much easier to understand and can be satisfied without the unattractive properties of existing theories, such as assumptions hidden in data analyses rather than stated up front, asymptotics, unfamiliar estimators, and complex variance calculations. Our theory of inference makes it possible for researchers to treat matching as a simple form of preprocessing to reduce model dependence, after which all the familiar inferential techniques and uncertainty calculations can be applied. This theory also allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments.

Article