Publications by Year: 2020

2020
Computational social science: Obstacles and opportunities
David M. J. Lazer, Alex Pentland, Duncan J. Watts, Sinan Aral, Susan Athey, Noshir Contractor, Deen Freelon, Sandra Gonzalez-Bailon, Gary King, Helen Margetts, Alondra Nelson, Matthew J. Salganik, Markus Strohmaier, Alessandro Vespignani, and Claudia Wagner. 8/28/2020. “Computational social science: Obstacles and opportunities.” Science, 369, 6507, Pp. 1060-1062. Publisher's VersionAbstract
The field of computational social science (CSS) has exploded in prominence over the past decade, with thousands of papers published using observational data, experimental designs, and large-scale simulations that were once unfeasible or unavailable to researchers. These studies have greatly improved our understanding of important phenomena, ranging from social inequality to the spread of infectious diseases. The institutions supporting CSS in the academy have also grown substantially, as evidenced by the proliferation of conferences, workshops, and summer schools across the globe, across disciplines, and across sources of data. But the field has also fallen short in important ways. Many institutional structures around the field—including research ethics, pedagogy, and data infrastructure—are still nascent. We suggest opportunities to address these issues, especially in improving the alignment between the organization of the 20th-century university and the intellectual requirements of the field.
Article
Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behaviour and Testing
William E. Allen, Han Altae-Tran, James Briggs, Xin Jin, Glen McGee, Andy Shi, Rumya Raghavan, Mireille Kamariza, Nicole Nova, Albert Pereta, Chris Danford, Amine Kamel, Patrik Gothe, Evrhet Milam, Jean Aurambault, Thorben Primke, Weijie Li, Josh Inkenbrandt, Tuan Huynh, Evan Chen, Christina Lee, Michael Croatto, Helen Bentley, Wendy Lu, Robert Murray, Mark Travassos, Brent A. Coull, John Openshaw, Casey S. Greene, Ophir Shalem, Gary King, Ryan Probasco, David R. Cheng, Ben Silbermann, Feng Zhang, and Xihong Lin. 8/26/2020. “Population-scale Longitudinal Mapping of COVID-19 Symptoms, Behaviour and Testing.” Nature Human Behavior. Publisher's VersionAbstract
Despite the widespread implementation of public health measures, coronavirus disease 2019 (COVID-19) continues to spread in the United States. To facilitate an agile response to the pandemic, we developed How We Feel, a web and mobile application that collects longitudinal self-reported survey responses on health, behaviour and demographics. Here, we report results from over 500,000 users in the United States from 2 April 2020 to 12 May 2020. We show that self-reported surveys can be used to build predictive models to identify likely COVID-19-positive individuals. We find evidence among our users for asymptomatic or presymptomatic presentation; show a variety of exposure, occupational and demographic risk factors for COVID-19 beyond symptoms; reveal factors for which users have been SARS-CoV-2 PCR tested; and highlight the temporal dynamics of symptoms and self-isolation behaviour. These results highlight the utility of collecting a diverse set of symptomatic, demographic, exposure and behavioural self-reported data to fight the COVID-19 pandemic.
Article
Building an International Consortium for Tracking Coronavirus Health Status
Eran Segal, Feng Zhang, Xihong Lin, Gary King, Ophir Shalem, Smadar Shilo, William E. Allen, Yonatan H. Grad, Casey S. Greene, Faisal Alquaddoomi, Simon Anders, Ran Balicer, Tal Bauman, Ximena Bonilla, Gisel Booman, Andrew T. Chan, Ori Cohen, Silvano Coletti, Natalie Davidson, Yuval Dor, David A. Drew, Olivier Elemento, Georgina Evans, Phil Ewels, Joshua Gale, Amir Gavrieli, Benjamin Geiger, Iman Hajirasouliha, Roman Jerala, Andre Kahles, Olli Kallioniemi, Ayya Keshet, Gregory Landua, Tomer Meir, Aline Muller, Long H. Nguyen, Matej Oresic, Svetlana Ovchinnikova, Hedi Peterson, Jay Rajagopal, Gunnar Rätsch, Hagai Rossman, Johan Rung, Andrea Sboner, Alexandros Sigaras, Tim Spector, Ron Steinherz, Irene Stevens, Jaak Vilo, Paul Wilmes, and CCC (Coronavirus Census Collective). 8/2020. “Building an International Consortium for Tracking Coronavirus Health Status.” Nature Medicine, 26, Pp. 1161-1165. Publisher's VersionAbstract
Information is the most potent protective weapon we have to combat a pandemic, at both the individual and global level. For individuals, information can help us make personal decisions and provide a sense of security. For the global community, information can inform policy decisions and offer critical insights into the epidemic of COVID-19 disease. Fully leveraging the power of information, however, requires large amounts of data and access to it. To achieve this, we are making steps to form an international consortium, Coronavirus Census Collective (CCC, coronaviruscensuscollective.org), that will serve as a hub for integrating information from multiple data sources that can be utilized to understand, monitor, predict, and combat global pandemics. These sources may include self-reported health status through surveys (including mobile apps), results of diagnostic laboratory tests, and other static and real-time geospatial data. This collective effort to track and share information will be invaluable in predicting hotspots of disease outbreak, identifying which factors control the rate of spreading, informing immediate policy decisions, evaluating the effectiveness of measures taken by health organizations on pandemic control, and providing critical insight on the etiology of COVID-19. It will also help individuals stay informed on this rapidly evolving situation and contribute to other global efforts to slow the spread of disease. In the past few weeks, several initiatives across the globe have surfaced to use daily self-reported symptoms as a means to track disease spread, predict outbreak locations, guide population measures and help in the allocation of healthcare resources. The aim of this paper is to put out a call to standardize these efforts and spark a collaborative effort to maximize the global gain while protecting participant privacy.
Paper
Instructional Support Platform for Interactive Learning Platforms (2nd)
Gary King, Eric Mazur, Kelly Miller, and Brian Lukoff. 6/23/2020. “Instructional Support Platform for Interactive Learning Platforms (2nd).” United States of America US 10,692,391 B2 (U.S Patent and Trademark Office).Abstract
In various embodiments, subject matter for improving discussions in connection with an educational resource is identified and summarized by analyzing annotations made by students assigned to a discussion group to identify high-quality annotations likely to generate responses and stimulate discussion threads, identifying clusters of high quality annotations relating to the same portion or related portions of the educational resource , extracting and summarizing text from the annotations, and combining , in an electronically represented document, the extracted and summarized text and (i) at least some of the annotations and the portion or portions of the educational resource or (ii) click able links thereto.
Patent
2/2020. “The SilverLining Project: Finding Social Good in Clouds on the Dark Web”.
Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Experiments
Kosuke Imai, Gary King, and Carlos Velasco Rivera. 1/31/2020. “Do Nonpartisan Programmatic Policies Have Partisan Electoral Effects? Evidence from Two Large Scale Experiments.” Journal of Politics, 81, 2, Pp. 714-730. Publisher's VersionAbstract

A vast literature demonstrates that voters around the world who benefit from their governments' discretionary spending cast more ballots for the incumbent party than those who do not benefit. But contrary to most theories of political accountability, some suggest that voters also reward incumbent parties for implementing "programmatic" spending legislation, over which incumbents have no discretion, and even when passed with support from all major parties. Why voters would attribute responsibility when none exists is unclear, as is why minority party legislators would approve of legislation that would cost them votes. We study the electoral effects of two large prominent programmatic policies that fit the ideal type especially well, with unusually large scale experiments that bring more evidence to bear on this question than has previously been possible. For the first policy, we design and implement ourselves one of the largest randomized social experiments ever. For the second policy, we reanalyze studies that used a large scale randomized experiment and a natural experiment to study the same question but came to opposite conclusions. Using corrected data and improved statistical methods, we show that the evidence from all analyses of both policies is consistent: programmatic policies have no effect on voter support for incumbents. We conclude by discussing how the many other studies in the literature may be interpreted in light of our results.

Article Supplementary Appendix
The “Math Prefresher” and The Collective Future of Political Science Graduate Training
Gary King, Shiro Kuriwaki, and Yon Soo Park. 2020. “The “Math Prefresher” and The Collective Future of Political Science Graduate Training.” PS: Political Science and Politics, 53, 3, Pp. 537-541. Publisher's VersionAbstract

The political science math prefresher arose a quarter century ago and has now spread to many of our discipline’s Ph.D. programs. Incoming students arrive for graduate school a few weeks early for ungraded instruction in math, statistics, and computer science as they are useful for political science. The prefresher’s benefits, however, go beyond the technical material taught: it develops lasting camaraderie with their entering class, facilitates connections with senior graduate students, opens pathways to mastering methods necessary for research, and eases the transition to the increasingly collaborative nature of graduate work. The prefresher also shows how faculty across a highly diverse discipline can work together to train the next generation. We review this program, highlight its collaborative aspects, and try to take the idea to the next level by building infrastructure to share teaching materials across universities so separate programs can build on each other’s work and improve all our programs.

Article
So You're a Grad Student Now? Maybe You Should Do This
Gary King. 2020. “So You're a Grad Student Now? Maybe You Should Do This.” In The SAGE Handbook of Research Methods in Political Science and International Relations, edited by Jr. Robert J. Franzese and Luigi Curini, Pp. 1--4. London: Sage Publications.Abstract
Congratulations! You’ve made it to graduate school. This means you’re in a select group, about to embark on a great adventure to learn about the world and teach us all some new things. This also means you obviously know how to follow rules. So I have five for you -- not counting the obvious one that to learn new things you’ll need to break some rules. After all, to be a successful academic, you’ll need to cut a new path, and so if you do exactly what your advisors and I did, you won’t get anywhere near as far since we already did it. So here are some rules, but break some of them, perhaps including this one
Chapter
Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies
Jonathan N. Katz, Gary King, and Elizabeth Rosenblatt. 2020. “Theoretical Foundations and Empirical Evaluations of Partisan Fairness in District-Based Democracies.” American Political Science Review, 114, 1, Pp. 164-178. Publisher's VersionAbstract
We clarify the theoretical foundations of partisan fairness standards for district-based democratic electoral systems, including essential assumptions and definitions that have not been recognized, formalized, or in some cases even discussed. We also offer extensive empirical evidence for assumptions with observable implications. Throughout, we follow a fundamental principle of statistical inference too often ignored in this literature -- defining the quantity of interest separately so its measures can be proven wrong, evaluated, or improved. This enables us to prove which of the many newly proposed fairness measures are statistically appropriate and which are biased, limited, or not measures of the theoretical quantity they seek to estimate at all. Because real world redistricting and gerrymandering involves complicated politics with numerous participants and conflicting goals, measures biased for partisan fairness sometimes still provide useful descriptions of other aspects of electoral systems.
Article Online Appendices