Publications by Year: Working Paper

Working Paper
Differentially Private Survey Research
Georgina Evans, Gary King, Adam D. Smith, and Abhradeep Thakurta. Working Paper. “Differentially Private Survey Research”.Abstract
Survey researchers have long sought to protect the privacy of their respondents via de-identification (removing names, addresses, and other directly identifying information) before analyzing or sharing data. Although these procedures obviously help in important circumstances, recent research demonstrates that they fail to protect survey respondents from intentional attempts at re-identification, a problem that threatens to  undermine vast survey enterprises in academia, government, and industry. This is especially a problem for political science because political beliefs are not only the subject of our survey questions and scholarship; they are key information respondents seek to keep private and elected representatives use to write privacy legislation. In this paper, we build on the concept of "differential privacy" to offer new survey research data sharing procedures with mathematical guarantees for protecting respondent privacy and statistical validity guarantees for social scientists analyzing differentially private data.  The cost of these new procedures is larger standard errors or confidence intervals, which can be overcome with somewhat larger sample sizes.
Paper
Evaluating COVID-19 Public Health Messaging in Italy: Self-Reported Compliance and Growing Mental Health Concerns
Soubhik Barari, Stefano Caria, Antonio Davola, Paolo Falco, Thiemo Fetzer, Stefano Fiorin, Lukas Hensel, Andriy Ivchenko, Jon Jachimowicz, Gary King, Gordon Kraft-Todd, Alice Ledda, Mary MacLennan, Lucian Mutoi, Claudio Pagani, Elena Reutskaja, Christopher Roth, and Federico Raimondi Slepoi. Working Paper. “Evaluating COVID-19 Public Health Messaging in Italy: Self-Reported Compliance and Growing Mental Health Concerns”. Publisher's VersionAbstract

Purpose: The COVID-19 death-rate in Italy continues to climb, surpassing that in every other country. We implement one of the first nationally representative surveys about this unprecedented public health crisis and use it to evaluate the Italian government’ public health efforts and citizen responses. 
Findings: (1) Public health messaging is being heard. Except for slightly lower compliance among young adults, all subgroups we studied understand how to keep themselves and others safe from the SARS-Cov-2 virus. Remarkably, even those who do not trust the government, or think the government has been untruthful about the crisis believe the messaging and claim to be acting in accordance. (2) The quarantine is beginning to have serious negative effects on the population’s mental health.
Policy Recommendations: Communications focus should move from explaining to citizens that they should stay at home to what they can do there. We need interventions that make staying at home and following public health protocols more desirable. These interventions could include virtual social interactions, such as online social reading activities, classes, exercise routines, etc. — all designed to reduce the boredom of long term social isolation and to increase the attractiveness of following public health recommendations. Interventions like these will grow in importance as the crisis wears on around the world, and staying inside wears on people.

Replication data for this study in dataverse

Paper
How and Why Do You Make Those Lecture Videos?
Gary King. Working Paper. “How and Why Do You Make Those Lecture Videos?”. [Direct link to paper]Abstract

I recorded all my lectures for “Quantitative Social Science Methods, I” -- the first course in the Harvard Government Department’s graduate methods sequence -- and made them publicly available (on YouTube here). In response to lots of subsequent requests for details on the technologies and pedagogy I used, here’s a summary of what I figured out and what I am still working on. Some of the ideas below come from my research; others from my personal experiments; and the rest from great advice I got from others directly or indirectly. Details on my class are available at j.mp/G2001.

 

How Human Subjects Research Rules Mislead You and Your University, and What to Do About it
Gary King and Melissa Sands. Working Paper. “How Human Subjects Research Rules Mislead You and Your University, and What to Do About it”.Abstract

Universities require faculty and students planning research involving human subjects to pass formal certification tests and then submit research plans for prior approval. Those who diligently take the tests may better understand certain important legal requirements but, at the same time, are often misled into thinking they can apply these rules to their own work which, in fact, they are not permitted to do. They will also be missing many other legal requirements not mentioned in their training but which govern their behaviors. Finally, the training leaves them likely to completely misunderstand the essentially political situation they find themselves in. The resulting risks to their universities, collaborators, and careers may be catastrophic, in addition to contributing to the more common ordinary frustrations of researchers with the system. To avoid these problems, faculty and students conducting research about and for the public need to understand that they are public figures, to whom different rules apply, ones that political scientists have long studied. University administrators (and faculty in their part-time roles as administrators) need to reorient their perspectives as well. University research compliance bureaucracies have grown, in well-meaning but sometimes unproductive ways that are not required by federal laws or guidelines. We offer advice to faculty and students for how to deal with the system as it exists now, and suggestions for changes in university research compliance bureaucracies, that should benefit faculty, students, staff, university budgets, and our research subjects.

Paper
PSI (Ψ): a Private data Sharing Interface
Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman, and Salil Vadhan. Working Paper. “PSI (Ψ): a Private data Sharing Interface”. Publisher's VersionAbstract

We provide an overview of PSI ("a Private data Sharing Interface"), a system we are developing to enable researchers in the social sciences and other fields to share and explore privacy-sensitive datasets with the strong privacy protections of differential privacy.

Paper
Statistically Valid Inferences from Differentially Private Data Releases, with Application to the Facebook URLs Dataset
Georgina Evans and Gary King. Working Paper. “Statistically Valid Inferences from Differentially Private Data Releases, with Application to the Facebook URLs Dataset”.Abstract

We offer methods to analyze the "differentially private" Facebook URLs Dataset which, at over 10 trillion cell values, is one of the largest social science research datasets ever constructed. The version of differential privacy used in the URLs dataset has specially calibrated random noise added, which provides mathematical guarantees for the privacy of individual research subjects while still making it possible to learn about aggregate patterns of interest to social scientists. Unfortunately, random noise creates measurement error which induces statistical bias -- including attenuation, exaggeration, switched signs, or incorrect uncertainty estimates. We adapt methods developed to correct for naturally occurring measurement error, with special attention to computational efficiency for large datasets. The result is statistically consistent and approximately unbiased linear regression estimates and descriptive statistics that can be interpreted as ordinary analyses of non-confidential data but with appropriately larger standard errors.

We have implemented these methods in open source software for R called PrivacyUnbiased.  Facebook has ported PrivacyUnbiased to open source Python code called svinfer.

Paper
Statistically Valid Inferences from Privacy Protected Data
Georgina Evans, Gary King, Margaret Schwenzfeier, and Abhradeep Thakurta. Working Paper. “Statistically Valid Inferences from Privacy Protected Data”.Abstract
Unprecedented quantities of data that could help social scientists understand and ameliorate the challenges of human society are presently locked away inside  companies, governments, and other organizations, in part because of worries about privacy violations. We address this problem with a general-purpose data access and analysis system with mathematical guarantees of privacy for individuals who may be represented in the data and statistical validity guarantees for researchers seeking population-level insights from it. We build on the standard of "differential privacy" but, unlike most such approaches, we also correct for the serious statistical biases induced by privacy-preserving procedures, provide a proper accounting for statistical uncertainty, and impose minimal constraints on the choice of data analytic methods and types of quantities estimated. Our algorithm is easy to implement, simple to use, and computationally efficient; we also offer open source software to illustrate all our methods.
Paper