Publications by Year: 2014

2014
The Parable of Google Flu: Traps in Big Data Analysis
David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “The Parable of Google Flu: Traps in Big Data Analysis.” Science, 14 March, 343: 1203-1205. Abstract
Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data.

In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States ( 1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data ( 3, 4), what lessons can we draw from this error?

Article
Participant Grouping for Enhanced Interactive Experience
Gary King, Brian Lukoff, and Eric Mazur. 2014. “Participant Grouping for Enhanced Interactive Experience.” United States of America US 8,914,373 B2 (U.S. Patent and Trademark Office). Abstract

Representative embodiments of a method for grouping participants in an activity include the steps of: (i) defining a grouping policy; (ii) storing, in a database, participant records that include a participant identifer, a characteristic associated With the participant, and/or an identifier for a participant’s handheld device; (iii) defining groupings based on the policy and characteristics of the participants relating to the policy and to the activity; and (iv) communicating the groupings to the handheld devices to establish the groups.

Patent
You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster)
Justin Grimmer, Gary King, and Chiara Superti. 2014. “You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster).” In Society for Political Methodology. Athens, GA. Abstract

This is a poster that describes our analysis of "partisan taunting," the explicit, public, and negative attacks on another political party or its members, usually using vitriolic and derogatory language. We first demonstrate that most projects that hand code text in the social sciences optimize with respect to the wrong criterion, resulting in large, unnecessary biases. We show how to fix this problem and then apply it to taunting. We find empirically that, unlike most claims in the press and the literature, taunting is not inexorably increasing; it appears instead to be a rational political strategy, most often used by those least likely to win by traditional means -- ideological extremists, out-party members when the president is unpopular, and minority party members. However, although taunting appears to be individually rational, it is collectively irrational: Constituents may resonate with one cutting taunt by their Senator, but they might not approve if he or she were devoting large amounts of time to this behavior rather than say trying to solve important national problems. We hope to partially rectify this situation by posting public rankings of Senatorial taunting behavior.

Poster
Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season
David Lazer, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014. “Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season”. Abstract
Last year was difficult for Google Flu Trends (GFT). In early 2013, Nature reported that GFT was estimating more than double the percentage of doctor visits for influenza like illness than the Centers for Disease Control and Prevention s (CDC) sentinel reports during the 2012 2013 flu season (1). Given that GFT was designed to forecast upcoming CDC reports, this was a problematic finding. In March 2014, our report in Science found that the overestimation problem in GFT was also present in the 2011 2012 flu season (2). The report also found strong evidence of autocorrelation and seasonality in the GFT errors, and presented evidence that the issues were likely, at least in part, due to modifications made by Google s search algorithm and the decision by GFT engineers not to use previous CDC reports or seasonality estimates in their models what the article labeled algorithm dynamics and big data hubris respectively. Moreover, the report and the supporting online materials detailed how difficult/impossible it is to replicate the GFT results, undermining independent efforts to explore the source of GFT errors and formulate improvements.
Paper
MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier
Gary King, Christopher Lucas, and Richard Nielsen. 2014. “MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier”. Abstract

MatchingFrontier is an easy-to-use R Package for making optimal causal inferences from observational data.  Despite their popularity, existing matching approaches leave researchers with two fundamental tensions. First, they are designed to maximize one metric (such as propensity score or Mahalanobis distance) but are judged against another for which they were not designed (such as L1 or differences in means). Second, they lack a principled solution to revealing the implicit bias-variance trade off: matching methods need to optimize with respect to both imbalance (between the treated and control groups) and the number of observations pruned, but existing approaches optimize with respect to only one; users then either ignore the other, or tweak it, usually suboptimally, by hand.

MatchingFrontier resolves both tensions by consolidating previous techniques into a single, optimal, and flexible approach. It calculates the matching solution with maximum balance for each possible sample size (N, N-1, N-2,...). It thus directly calculates the entire balance-sample size frontier, from which the user can easily choose one, several, or all subsamples from which to conduct their final analysis, given their own choice of imbalance metric and quantity of interest. MatchingFrontier solves the joint optimization problem in one run, automatically, without manual tweaking, and without iteration.  Although for each subset size k, there exist a huge (N choose k) number of unique subsets, MatchingFrontier includes specially designed fast algorithms that give the optimal answer, usually in a few minutes.  

MatchingFrontier implements the methods in this paper:  

King, Gary, Christopher Lucas, and Richard Nielsen. 2014. The Balance-Sample Size Frontier in Matching Methods for Causal Inference, copy at http://j.mp/1dRDMrE

See http://projects.iq.harvard.edu/frontier/

Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster)
Gary King, Benjamin Schneer, and Ariel White. 2014. “Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster).” In Society for Political Methodology. Athens, GA. Abstract

This is a poster presentation describing (1) the largest ever experimental study of media effects, with more than 50 cooperating traditional media sites, normally unavailable web site analytics, the text of hundreds of thousands of news articles, and tens of millions of social media posts, and (2) a design we used in preparation that attempts to anticipate experimental outcomes

Poster
Restructuring the Social Sciences: Reflections from Harvard's Institute for Quantitative Social Science

The social sciences are undergoing a dramatic transformation from studying problems to solving them; from making do with a small number of sparse data sets to analyzing increasing quantities of diverse, highly informative data; from isolated scholars toiling away on their own to larger scale, collaborative, interdisciplinary, lab-style research teams; and from a purely academic pursuit to having a major impact on the world. To facilitate these important developments, universities, funding agencies, and governments need to shore up and adapt the infrastructure that supports social science research. We discuss some of these developments here, as well as a new type of organization we created at Harvard to help encourage them -- the Institute for Quantitative Social Science.  An increasing number of universities are beginning efforts to respond with similar institutions. This paper provides some suggestions for how individual universities might respond and how we might work together to advance social science more generally.

Article
Reverse-engineering censorship in China: Randomized experimentation and participant observation
Gary King, Jennifer Pan, and Margaret E. Roberts. 2014. “Reverse-engineering censorship in China: Randomized experimentation and participant observation.” Science, 6199, 345: 1-10. Publisher's Version Abstract

Existing research on the extensive Chinese censorship organization uses observational methods with well-known limitations. We conducted the first large-scale experimental study of censorship by creating accounts on numerous social media sites, randomly submitting different texts, and observing from a worldwide network of computers which texts were censored and which were not. We also supplemented interviews with confidential sources by creating our own social media site, contracting with Chinese firms to install the same censoring technologies as existing sites, and—with their software, documentation, and even customer support—reverse-engineering how it all works. Our results offer rigorous support for the recent hypothesis that criticisms of the state, its leaders, and their policies are published, whereas posts about real-world events with collective action potential are censored.

Article Supplementary materials Article Summary