Areas of Research

    • Automated Text Analysis
      Automated and computer-assisted methods of extracting, organizing, and consuming knowledge from unstructured text.
    • Incumbency Advantage
      Proof that previously used estimators of electoral incumbency advantage were biased, and a new unbiased estimator. Also, the first systematic demonstration that constituency service by legislators increases the incumbency advantage.
    • Mexican Health Care Evaluation
      An evaluation of the Mexican Seguro Popular program (designed to extend health insurance and regular and preventive medical care, pharmaceuticals, and health facilities to 50 million uninsured Mexicans), one of the world's largest health policy reforms of the last two decades. Our evaluation features a new design for field experiments that is more robust to the political interventions and implementation errors that have ruined many similar previous efforts; new statistical methods that produce more reliable and efficient results using fewer resources, assumptions, and data; and an implementation of these methods in the largest randomized health policy experiment to date. (See the Harvard Gazette story on this project.)
    • Presidency Research; Voting Behavior
      Resolution of the paradox of why polls are so variable over time during presidential campaigns even though the vote outcome is easily predictable before it starts. Also, a resolution of a key controversy over absentee ballots during the 2000 presidential election; and the methodology of small-n research on executives.
    • Informatics and Data Sharing
      Replication Standards New standards, protocols, and software for citing, sharing, analyzing, archiving, preserving, distributing, cataloging, translating, disseminating, naming, verifying, and replicating scholarly research data and analyses. Also includes proposals to improve the norms of data sharing and replication in science.
    • International Conflict
      Methods for coding, analyzing, and forecasting international conflict and state failure. Evidence that the causes of conflict, theorized to be important but often found to be small or ephemeral, are indeed tiny for the vast majority of dyads, but are large, stable, and replicable wherever the ex ante probability of conflict is large.
    • Legislative Redistricting
      The definition of partisan symmetry as a standard for fairness in redistricting; methods and software for measuring partisan bias and electoral responsiveness; discussion of U.S. Supreme Court rulings about this work. Evidence that U.S. redistricting reduces bias and increases responsiveness, and that the electoral college is fair; applications to legislatures, primaries, and multiparty systems.
    • Mortality Studies
      Methods for forecasting mortality rates (overall or for time series data cross-classified by age, sex, country, and cause); estimating mortality rates in areas without vital registration; measuring inequality in risk of death; applications to US mortality, the future of the Social Security, armed conflict, heart failure, and human security.
    • Teaching and Administration
      Publications and other projects designed to improve teaching, learning, and university administration, as well as broader writings on the future of the social sciences.
    • Causal Inference
      Methods for detecting and reducing model dependence (i.e., when minor model changes produce substantively different inferences) in inferring causal effects and other counterfactuals. Matching methods; "politically robust" and cluster-randomized experimental designs; causal bias decompositions.
    • Event Counts and Durations
      Statistical models to explain or predict how many events occur for each fixed time period, or the time between events. An application to cabinet dissolution in parliamentary democracies which united two previously warring scholarly literature. Other applications to international relations and U.S. Supreme Court appointments.
    • Ecological Inference
      Inferring individual behavior from group-level data: The first approach to incorporate both unit-level deterministic bounds and cross-unit statistical information, methods for 2x2 and larger tables, Bayesian model averaging, applications to elections, software.
    • Missing Data
      Statistical methods to accommodate missing information in data sets due to scattered unit nonresponse, missing variables, or cell values or variables measured with error. Easy-to-use algorithms and software for multiple imputation and multiple overimputation for surveys, time series, and time series cross-sectional data. Applications to electoral, and other compositional, data.
    • Qualitative Research
      How the same unified theory of inference underlies quantitative and qualitative research alike; scientific inference when quantification is difficult or impossible; research design; empirical research in legal scholarship.
    • Rare Events
      How to save 99% of your data collection costs; bias corrections for logistic regression in estimating probabilities and causal effects in rare events data; estimating base probabilities or any quantity from case-control data; automated coding of events.
    • Survey Research
      "Anchoring Vignette" methods for when different respondents (perhaps from different cultures, countries, or ethnic groups) understand survey questions in different ways; an approach to developing theoretical definitions of complicated concepts apparently definable only by example (i.e., "you know it when you see it"); how surveys work.
    • Unifying Statistical Analysis
      Development of a unified approach to statistical modeling, inference, interpretation, presentation, analysis, and software; integrated with most of the other projects listed here.

Recent Work

<span style="line-height: 22.3999996185303px;">A Theory of Statistical Inference for Matching Methods in Applied Causal Research</span>
Iacus, Stefano M, Gary King, and Giuseppe Porro. Working Paper. A Theory of Statistical Inference for Matching Methods in Applied Causal Research.Abstract
Applied researchers use matching methods for causal inference most commonly as a data preprocessing step for reducing model dependence and bias, after which they use whatever statistical model and uncertainty estimators they would have without matching, such as a difference in means or regression. They also routinely ignore the requirement of existing theory that all matches be exact, and also commonly use ad hoc analyses with iterations between formal matching methods and informal balance checks. We offer the first comprehensive theory of statistical inference to justify these widely used procedures. The theory we propose is substantively plausible, requires no asymptotic theory, and is simple to understand. Its core conceptualizes continuous variables as having natural breakpoints, which are common in applications (e.g., high school or college degrees in years of education, a governmental poverty level in income, or phase transitions in temperature). The theory allows binary, multicategory, and continuous treatment variables from the outset and straightforward extensions for imperfect treatment assignment and different versions of treatments. Although this theory provides a valid foundation for most commonly used methods of matching, researchers must still satisfy the assumptions in any real application.
<p>A Unified Approach to Measurement Error and Missing Data: Overview</p>
Blackwell, Matthew, James Honaker, and Gary King. In Press.

A Unified Approach to Measurement Error and Missing Data: Overview

, Sociological Methods and Research.Abstract
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model dependence, difficult computation, or inapplicability with multiple mismeasured variables. We develop an easy-to-use alternative without these problems; it generalizes the popular multiple imputation (MI) framework by treating missing data problems as a limiting special case of extreme measurement error, and corrects for both. Like MI, the proposed framework is a simple two-step procedure, so that in the second step researchers can use whatever statistical method they would have if there had been no problem in the first place. We also offer empirical illustrations, open source software that implements all the methods described herein, and a companion paper with technical details and extensions (Blackwell, Honaker, and King, 2014b).
<p>Automating Open Science for Big Data</p>
Crosas, Merce, James Honaker, Gary King, and Latanya Sweeney. In Press.

Automating Open Science for Big Data

, ANNALS of the American Academy of Political and Social Science.Abstract
The vast majority of social science research presently uses small (MB or GB scale) data sets. These fixed-scale data sets are commonly downloaded to the researcher's computer where the analysis is performed locally, and are often shared and cited with well-established technologies, such as the Dataverse Project (see, to support the published results.  The trend towards Big Data -- including large scale streaming data -- is starting to transform research and has the potential to impact policy-making and our understanding of the social, economic, and political problems that affect human societies.  However, this research poses new challenges in execution, accountability, preservation, reuse, and reproducibility. Downloading these data sets to a researcher’s computer is infeasible or not practical; hence, analyses take place in the cloud, require unusual expertise, and benefit from collaborative teamwork and novel tool development. The advantage of these data sets in how informative they are also means that they are much more likely to contain highly sensitive personally identifiable information. In this paper, we discuss solutions to these new challenges so that the social sciences can realize the potential of Big Data.
<p>A Unified Approach to Measurement Error and Missing Data: Details and Extensions</p>
Blackwell, Matthew, James Honaker, and Gary King. In Press.

A Unified Approach to Measurement Error and Missing Data: Details and Extensions

, Sociological Methods and Research.Abstract
We extend a unified and easy-to-use approach to measurement error and missing data. Blackwell, Honaker, and King (2014a) gives an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details; more sophisticated measurement error model specifications and estimation procedures; and analyses to assess the approach's robustness to correlated measurement errors and to errors in categorical variables. These results support using the technique to reduce bias and increase efficiency in a wide variety of empirical research.
<p><em>You Lie!</em> Patterns of Partisan Taunting in the U.S. Senate (Poster)</p>
Grimmer, Justin, Gary King, and Chiara Superti. 2014.

You Lie! Patterns of Partisan Taunting in the U.S. Senate (Poster)

, in Society for Political Methodology. Athens, GA.Abstract
This is a poster that describes our analysis of "partisan taunting," the explicit, public, and negative attacks on another political party or its members, usually using vitriolic and derogatory language. We first demonstrate that most projects that hand code text in the social sciences optimize with respect to the wrong criterion, resulting in large, unnecessary biases. We show how to fix this problem and then apply it to taunting. We find empirically that, unlike most claims in the press and the literature, taunting is not inexorably increasing; it appears instead to be a rational political strategy, most often used by those least likely to win by traditional means -- ideological extremists, out-party members when the president is unpopular, and minority party members. However, although taunting appears to be individually rational, it is collectively irrational: Constituents may resonate with one cutting taunt by their Senator, but they might not approve if he or she were devoting large amounts of time to this behavior rather than say trying to solve important national problems. We hope to partially rectify this situation by posting public rankings of Senatorial taunting behavior.
<p>Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster)</p>
King, Gary, Benjamin Schneer, and Ariel White. 2014.

Methods for Extremely Large Scale Media Experiments and Observational Studies (Poster)

, in Society for Political Methodology. Athens, GA.Abstract
This is a poster presentation describing (1) the largest ever experimental study of media effects, with more than 50 cooperating traditional media sites, normally unavailable web site analytics, the text of hundreds of thousands of news articles, and tens of millions of social media posts, and (2) a design we used in preparation that attempts to anticipate experimental outcomes
<p>Reverse-engineering censorship in China: Randomized experimentation and participant observation</p>
King, Gary, Jennifer Pan, and Margaret E Roberts. 2014.

Reverse-engineering censorship in China: Randomized experimentation and participant observation

, Science 345, no. 6199: 1-10. Publisher's VersionAbstract
Existing research on the extensive Chinese censorship organization uses observational methods with well-known limitations. We conducted the first large-scale experimental study of censorship by creating accounts on numerous social media sites, randomly submitting different texts, and observing from a worldwide network of computers which texts were censored and which were not. We also supplemented interviews with confidential sources by creating our own social media site, contracting with Chinese firms to install the same censoring technologies as existing sites, and—with their software, documentation, and even customer support—reverse-engineering how it all works. Our results offer rigorous support for the recent hypothesis that criticisms of the state, its leaders, and their policies are published, whereas posts about real-world events with collective action potential are censored.
<p>Computer-Assisted Keyword and Document Set Discovery from Unstructured Text</p>
King, Gary, Patrick Lam, and Margaret Roberts. 2014.

Computer-Assisted Keyword and Document Set Discovery from Unstructured Text

The (unheralded) first step in many applications of automated text analysis involves selecting keywords to choose documents from a large text corpus for further study. Although all substantive results depend crucially on this choice, researchers typically pick keywords in ad hoc ways, given the lack of formal statistical methods to help. Paradoxically, this often means that the validity of the most sophisticated text analysis methods depends in practice on the inadequate keyword counting or matching methods they are designed to replace. The same ad hoc keyword selection process is also used in many other areas, such as following conversations that rapidly innovate language to evade authorities, seek political advantage, or express creativity; generic web searching; eDiscovery; look-alike modeling; intelligence analysis; and sentiment and topic analysis. We develop a computer-assisted (as opposed to fully automated) statistical approach that suggests keywords from available text, without needing any structured data as inputs. This framing poses the statistical problem in a new way, which leads to a widely applicable algorithm. Our specific approach is based on training classifiers, extracting information from (rather than correcting) their mistakes, and then summarizing results with Boolean search strings. We illustrate how the technique works with examples in English and Chinese.
<p>Google Flu Trends Still Appears Sick:&nbsp;An Evaluation of the 2013‐2014 Flu Season</p>
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.

Google Flu Trends Still Appears Sick: An Evaluation of the 2013‐2014 Flu Season

Last year was difficult for Google Flu Trends (GFT). In early 2013, Nature reported that GFT was estimating more than double the percentage of doctor visits for influenza like illness than the Centers for Disease Control and Prevention s (CDC) sentinel reports during the 2012 2013 flu season (1). Given that GFT was designed to forecast upcoming CDC reports, this was a problematic finding. In March 2014, our report in Science found that the overestimation problem in GFT was also present in the 2011 2012 flu season (2). The report also found strong evidence of autocorrelation and seasonality in the GFT errors, and presented evidence that the issues were likely, at least in part, due to modifications made by Google s search algorithm and the decision by GFT engineers not to use previous CDC reports or seasonality estimates in their models what the article labeled algorithm dynamics and big data hubris respectively. Moreover, the report and the supporting online materials detailed how difficult/impossible it is to replicate the GFT results, undermining independent efforts to explore the source of GFT errors and formulate improvements.
<p>The Parable of Google Flu: Traps in Big Data Analysis</p>
Lazer, David, Ryan Kennedy, Gary King, and Alessandro Vespignani. 2014.

The Parable of Google Flu: Traps in Big Data Analysis

, Science 343, no. 14 March: 1203-1205.Abstract
Large errors in flu prediction were largely avoidable, which offers lessons for the use of big data. In February 2013, Google Flu Trends (GFT) made headlines but not for a reason that Google executives or the creators of the flu tracking system would have hoped. Nature reported that GFT was predicting more than double the proportion of doctor visits for influenza-like illness (ILI) than the Centers for Disease Control and Prevention (CDC), which bases its estimates on surveillance reports from laboratories across the United States ( 1, 2). This happened despite the fact that GFT was built to predict CDC reports. Given that GFT is often held up as an exemplary use of big data ( 3, 4), what lessons can we draw from this error?
<p>The Balance-Sample Size Frontier in Matching Methods for Causal Inference</p>
King, Gary, Christopher Lucas, and Richard Nielsen. 2014.

The Balance-Sample Size Frontier in Matching Methods for Causal Inference

We propose a simplified approach to matching for causal inference that simultaneously optimizes both balance (between the treated and control groups) and matched sample size. This procedure resolves two widespread tensions in the use of this powerful and popular methodology. First, current practice is to run a matching method that maximizes one balance metric (such as a propensity score or average Mahalanobis distance), but then to check whether it succeeds with respect to a different balance metric for which it was not designed (such as differences in means or L1). Second, current matching methods either fix the sample size and maximize balance (e.g., Mahalanobis or propensity score matching), fix balance and maximize the sample size (such as coarsened exact matching), or are arbitrary compromises between the two (such as calipers with ad hoc thresholds applied to other methods). These tensions lead researchers to either try to optimize manually, by iteratively tweaking their matching method and rechecking balance, or settle for suboptimal solutions. We address these tensions by first defining and showing how to calculate the matching frontier as the set of matching solutions with maximum balance for each possible sample size. Researchers can then choose one, several, or all matching solutions from the frontier for analysis in one step without iteration. The main difficulty in this strategy is that checking all possible solutions is exponentially difficult. We solve this problem with new algorithms that finish fast, optimally, and without iteration or manual tweaking. We also offer easy-to-use software that implements these ideas, along with several empirical applications.
Demographic Forecasting
Girosi, Federico, and Gary King. 2008. Demographic Forecasting. Princeton: Princeton University Press.Abstract
We introduce a new framework for forecasting age-sex-country-cause-specific mortality rates that incorporates considerably more information, and thus has the potential to forecast much better, than any existing approach. Mortality forecasts are used in a wide variety of academic fields, and for global and national health policy making, medical and pharmaceutical research, and social security and retirement planning. As it turns out, the tools we developed in pursuit of this goal also have broader statistical implications, in addition to their use for forecasting mortality or other variables with similar statistical properties. First, our methods make it possible to include different explanatory variables in a time series regression for each cross-section, while still borrowing strength from one regression to improve the estimation of all. Second, we show that many existing Bayesian (hierarchical and spatial) models with explanatory variables use prior densities that incorrectly formalize prior knowledge. Many demographers and public health researchers have fortuitously avoided this problem so prevalent in other fields by using prior knowledge only as an ex post check on empirical results, but this approach excludes considerable information from their models. We show how to incorporate this demographic knowledge into a model in a statistically appropriate way. Finally, we develop a set of tools useful for developing models with Bayesian priors in the presence of partial prior ignorance. This approach also provides many of the attractive features claimed by the empirical Bayes approach, but fully within the standard Bayesian theory of inference.
Ecological Inference: New Methodological Strategies
King, Gary, Ori Rosen, Martin Tanner, Gary King, Ori Rosen, and Martin A Tanner. 2004. Ecological Inference: New Methodological Strategies. New York: Cambridge University Press.Abstract
Ecological Inference: New Methodological Strategies brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half decade has witnessed an explosion of research in ecological inference – the attempt to infer individual behavior from aggregate data. The uncertainties and the information lost in aggregation make ecological inference one of the most difficult areas of statistical inference, but such inferences are required in many academic fields, as well as by legislatures and the courts in redistricting, by businesses in marketing research, and by governments in policy analysis.
<p>MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier</p>
King, Gary, Christopher Lucas, and Richard Nielsen. 2014.

MatchingFrontier: R Package for Calculating the Balance-Sample Size Frontier

MatchingFrontier is an easy-to-use R Package for making optimal causal inferences from observational data.  Despite their popularity, existing matching approaches leave researchers with two fundamental tensions. First, they are designed to maximize one metric (such as propensity score or Mahalanobis distance) but are judged against another for which they were not designed (such as L1 or differences in means). Second, they lack a principled solution to revealing the implicit bias-variance trade off: matching methods need to optimize with respect to both imbalance (between the treated and control groups) and the number of observations pruned, but existing approaches optimize with respect to only one; users then either ignore the other, or tweak it, usually suboptimally, by hand. MatchingFrontier resolves both tensions by consolidating previous techniques into a single, optimal, and flexible approach. It calculates the matching solution with maximum balance for each possible sample size (N, N-1, N-2,...). It thus directly calculates the entire balance-sample size frontier, from which the user can easily choose one, several, or all subsamples from which to conduct their final analysis, given their own choice of imbalance metric and quantity of interest. MatchingFrontier solves the joint optimization problem in one run, automatically, without manual tweaking, and without iteration.  Although for each subset size k, there exist a huge (N choose k) number of unique subsets, MatchingFrontier includes specially designed fast algorithms that give the optimal answer, usually in a few minutes.   MatchingFrontier implements the methods in this paper:   King, Gary, Christopher Lucas, and Richard Nielsen. 2014. The Balance-Sample Size Frontier in Matching Methods for Causal Inference, copy at See
JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans
Gelman, Andrew, Gary King, and Andrew Thomas. 2010. JudgeIt II: A Program for Evaluating Electoral Systems and Redistricting Plans. Publisher's VersionAbstract
A program for analyzing most any feature of district-level legislative elections data, including prediction, evaluating redistricting plans, estimating counterfactual hypotheses (such as what would happen if a term-limitation amendment were imposed). This implements statistical procedures described in a series of journal articles and has been used during redistricting in many states by judges, partisans, governments, private citizens, and many others. The earlier version was winner of the APSA Research Software Award.
AMELIA II: A Program for Missing Data
Honaker, James, Gary King, and Matthew Blackwell. 2009. AMELIA II: A Program for Missing Data. Publisher's VersionAbstract
This program multiply imputes missing data in cross-sectional, time series, and time series cross-sectional data sets. It includes a Windows version (no knowledge of R required), and a version that works with R either from the command line or via a GUI.
Girosi, Frederico, and Gary King. 2004. YourCast. Publisher's VersionAbstract
YourCast is (open source and free) software that makes forecasts by running sets of linear regressions together in a variety of sophisticated ways. YourCast avoids the bias that results when stacking datasets from separate cross-sections and assuming constant parameters, and the inefficiency that results from running independent regressions in each cross-section.
Tomz, Michael, Jason Wittenberg, and Gary King. 2003. CLARIFY: Software for Interpreting and Presenting Statistical Results, Journal of Statistical Software.Abstract
This is a set of easy-to-use Stata macros that implement the techniques described in Gary King, Michael Tomz, and Jason Wittenberg's "Making the Most of Statistical Analyses: Improving Interpretation and Presentation". To install Clarify, type "net from" at the Stata command line. The documentation [ HTML | PDF ] explains how to do this. We also provide a zip archive for users who want to install Clarify on a computer that is not connected to the internet. Winner of the Okidata Best Research Software Award. Also try -ssc install qsim- to install a wrapper, donated by Fred Wolfe, to automate Clarify's simulation of dummy variables.